1
|
Zu H, Yan X, Wu J, Zhao J, Mayo KH, Zhou Y, Cui L, Cheng H, Sun L. Application of an α-galactosidase from Bacteroides fragilis on structural analysis of raffinose family oligosaccharides. Carbohydr Polym 2024; 346:122661. [PMID: 39245515 DOI: 10.1016/j.carbpol.2024.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Raffinose family oligosaccharides (RFOs) have diverse structures and exhibit various biological activities. When using RFOs as prebiotics, their structures need to be identified. If we first knew whether an RFO was classical or non-classical, structural identification would become much easier. Here, we cloned and expressed an α-galactosidase (BF0224) from Bacteroides fragilis which showed strict specificity for hydrolyzing α-Gal-(1 → 6)-Gal linkages in RFOs. BF0224 efficiently distinguished classical from non-classical RFOs by identifying the resulting hydrolyzed oligo- and mono-saccharides with HPAEC-PAD-MS. Using this strategy, we identified a non-classical RFO from Pseudostellaria heterophylla (Miquel) Pax with DP6 (termed PHO-6), as well as a classical RFO from Lycopus lucidus Turcz. with DP7 (termed LTO-7). To characterize these RFO structures, we employed four other commercial or reported α-galactosidases in combination with NMR and methylation analysis. Using this approach, we elucidated the accurate chemical structure of PHO-6 and LTO-7. Our study provides an efficient analytical approach to structurally analyze RFOs. This enzyme-based strategy also can be applied to structural analysis of other glycans.
Collapse
Affiliation(s)
- Heyang Zu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Xuecui Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Jingying Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Chandrasekar CM, Carullo D, Saitta F, Krishnamachari H, Bellesia T, Nespoli L, Caneva E, Baschieri C, Signorelli M, Barbiroli AG, Fessas D, Farris S, Romano D. Valorization of citrus peel industrial wastes for facile extraction of extractives, pectin, and cellulose nanocrystals through ultrasonication: An in-depth investigation. Carbohydr Polym 2024; 344:122539. [PMID: 39218557 DOI: 10.1016/j.carbpol.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
In this work we developed an eco-friendly valorisation of Citrus wastes (CWs), through a solvent-assisted ultrasonication extraction technique, thus having access to a wide range of bio-active compounds and polysaccharides, extremely useful in different industrial sectors (food, cosmetics, nutraceutical). Water-based low-amplitude ultrasonication was examined as a potential method for pectin extraction as well as polar and non-polar citrus extractives (CEs), among which hesperidin and triglycerides of 18 carbon fatty acids were found to be the most representative ones. In addition, citric acid:glycerol (1:4)-based deep eutectic solvent (DES) in combination with ultrasonic extraction was utilized to extract microcellulose (CMC), from which stable cellulose nanocrystals (CNCs) with glycerol-assisted high amplitude ultrasonication were obtained. The physical and chemical properties of the extracted polysaccharides (pectin, micro and nanocellulose) were analysed through DLS, ζ-potential, XRD, HP-SEC, SEM, AFM, TGA-DSC, FTIR, NMR, and PMP-HPLC analyses. The putative structure of the extracted citrus pectin (CP) was analysed and elucidated through enzyme-assisted hydrolysis in correlation with ESI-MS and monosaccharide composition. The developed extraction methods are expected to influence the industrial process for the valorisation of CWs and implement the circular bio-economy.
Collapse
Affiliation(s)
- Chandra Mohan Chandrasekar
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Daniele Carullo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Francesca Saitta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | | | - Tommaso Bellesia
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Luca Nespoli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Carlo Baschieri
- UNITECH COSPECT: Comprehensive Substances characterisation via advanced sPECTtrometry, Milan, Italy
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Alberto Giuseppe Barbiroli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Stefano Farris
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| | - Diego Romano
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan (UNIMI), Milan, Italy
| |
Collapse
|
3
|
Yan X, Wang Y, Zhang Y, Wang X, Liu Y, Cui J, Mayo KH, Zhou Y, Cui L. Preparation of β-galacto-oligosaccharides using a novel endo-1,4-β-galactanase from Penicillium oxalicum. Int J Biol Macromol 2024; 254:127966. [PMID: 37944726 DOI: 10.1016/j.ijbiomac.2023.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Endo-1,4-β-galactanase is an indispensable tool for preparing prebiotic β-galacto-oligosaccharides (β-GOS) from pectic galactan resources. In the present study, a novel endo-1,4-β-galactanase (PoβGal53) belonging to glycoside hydrolase family 53 from Penicillium oxalicum sp. 68 was cloned and expressed in Pichia pastoris GS115. Upon purification by affinity chromatography, recombinant PoβGal53 exhibited a single band on SDS-PAGE with a molecular weight of 45.0 kDa. Using potato galactan as substrate, PoβGal53 showed optimal reaction conditions of pH 4.0, 40 °C, and was thermostable, retaining >80 % activity after incubating below 45 °C for 12 h. Significantly, PoβGal53 exhibited relatively conserved substrate specificity for (1 → 4)-β-D-galactan with an activity of 6244 ± 282 U/mg. In this regard, the enzyme is in effect the most efficient endo-1,4-β-galactanase identified to date. By using PoβGal53, β-GOS monomers were prepared from potato galactan and separated using medium pressure liquid chromatography. HPAEC-PAD, MALDI-TOF-MS and ESI-MS/MS analyses demonstrated that these β-GOS species ranged from 1,4-β-D-galactobiose to 1,4-β-D-galactooctaose (DP 2-8) with high purity. This work provides not only a highly active tool for enzymatic degradation of pectic galactan, but an efficient protocol for preparing β-GOS.
Collapse
Affiliation(s)
- Xuecui Yan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaxin Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yunxia Liu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Jing Cui
- Institute of innovation science & technology, Central Laboratory, Changchun Normal University, Changchun, 130031, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Liangnan Cui
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry, Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Cui L, Wang X, Wang C, Yan Y, Zhang M, Mayo KH, Sun L, Zhou Y. An efficient protocol for preparing linear β-manno-oligosaccharides. Carbohydr Res 2023; 532:108895. [PMID: 37463551 DOI: 10.1016/j.carres.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Linear β-manno-oligosaccharides (l-β-MOS) are widely used to investigate oligo- and poly-saccharide structures and mannanolytic enzyme activities. l-β-MOS are also being used as prebiotic agents with potential bio-active properties. In this study, we developed an efficient protocol to prepare a series of l-β-MOS by hydrolyzing cassia gum (CG) using mannanolytic enzymes (endo-1,4-β-mannanase, α-galactosidases and β-glucosidases). By using medium pressure liquid chromatography (MPLC), we purified l-β-MOS with different degrees of polymerization (DPs). HPAEC-PAD, MALDI-TOF-MS and NMR studies confirmed that these l-β-MOS species ranged from 1,4-β-d-mannobiose to 1,4-β-d-mannononaose (DP 2-9) with >95% purity. Our results provide a robust approach to preparing l-β-MOS, thus enabling l-β-MOS to be further used in the fields of chemistry, life science, and nutritional food.
Collapse
Affiliation(s)
- Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Chao Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yue Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Mengshan Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
5
|
Cui L, Wu J, Wang X, Yang X, Ye Z, Mayo KH, Sun L, Zhou Y. Purification and identification of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes. Food Chem X 2023; 18:100706. [PMID: 37215199 PMCID: PMC10196342 DOI: 10.1016/j.fochx.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Even though Cimicifuga sp. is widely used in functional foods around the world, the content and structure of its oligosaccharides remain unclear. Here, we isolated a mixture of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes with a yield of 9.5% w/w. Twenty-six oligosaccharide monomers from the mixture were purified using optimized SEC and HILIC techniques. The oligosaccharides were identified as belonging to two groups by using HPAEC-PAD, MALDI-TOF-MS, NMR and GC-MS methylation analyses. One group belongs to sucrose and inulin type fructo-oligosaccharides (FOS) {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 ↔ 1)]n=1-12-α-d-Glcp} with a 3-14 degree of polymerization (DP). Oligosaccharides in the other group belong to the inulo-n-ose type FOS {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 → 1)]m=0-12-β-d-Frup} with a DP of 2-14. This appears to be the first time that these oligosaccharides have been purified from Cimicifuga heracleifolia Kom., thus providing useful information concerning the utilization of Cimicifuga heracleifolia Kom. in functional foods.
Collapse
Affiliation(s)
- Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Yang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zixin Ye
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Wang J, Zhao J, Nie S, Xie M, Li S. MALDI mass spectrometry in food carbohydrates analysis: A review of recent researches. Food Chem 2023; 399:133968. [DOI: 10.1016/j.foodchem.2022.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
|
9
|
Wang J, Zhao J, Nie S, Xie M, Li S. Mass spectrometry for structural elucidation and sequencing of carbohydrates. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Castro-Alves VC, Nascimento JROD. Size matters: TLR4-mediated effects of α-(1,5)-linear arabino-oligosaccharides in macrophage-like cells depend on their degree of polymerization. Food Res Int 2021; 141:110093. [PMID: 33641969 DOI: 10.1016/j.foodres.2020.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Linear arabino-oligosaccharides (LAOS) produced from controlled enzymatic hydrolysis of arabinans from sugar beet are well-known because of their chain-length dependent prebiotic effects. However, it is not clear if these α-(1,5)-linked arabinose oligosaccharides can interact directly with immune system cells, as well as if its degree of polymerization (DP) influences possible biological effects. Four high purity LAOS with distinct DP were tested in macrophage-like cells exposed or not to LPS. Results shown that LAOS interact with Toll-like receptor (TLR) 4 in a chain length-dependent manner. LAOS with higher DP induce stimulatory effects mainly through the TLR4/MyD88 pathway, thereby enhancing the release of tumor necrosis factor alpha (TNF-α), interleukin (IL-) 1β, 6, 12, and chemokines including MCP-1, RANTES, IL-8, and IP-10. Notably, LAOS with lower DP appears to have an opposite effect to those counterparts with higher DP, as they does not induce the secretion of cytokines and chemokines in macrophages-like cells, while also inhibit TLR4-mediated effects induced by both lipopolysaccharide and LAOS with higher DP. These findings provide not only insights into potential biological effects of LAOS, but also reveal that controlled enzymatic hydrolysis of sugar beet arabinans may lead to dietary oligosaccharides with desired biological properties.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil.
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|