1
|
Zhang X, Zhang L, Li B, Wang Q, Chen P, Shi R, Zhou X, Niu X, Zhai W, Wu Y, Shen W, Zhou X, Zhao W. Identification of Epinastine as CD96/PVR inhibitor for cancer immunotherapy. BMC Biol 2025; 23:27. [PMID: 39871281 PMCID: PMC11773930 DOI: 10.1186/s12915-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Poliovirus receptor (PVR) and its receptor system, including TIGIT, CD226, and CD96, play a pivotal role in orchestrating tumor immune evasion. Upon engagement with PVR on tumor cells, CD96 exerts inhibitory effects on the function of T cells and NK cells, thereby fostering tumor immune evasion. Therefore, screening of immune checkpoint inhibitors (ICIs) targeting the CD96/PVR pathway will provide promising candidates for tumor immunotherapy. RESULTS In this investigation, we employed MOE software to conduct virtual screening of small molecules from the FDA-approved drug library. Our results demonstrated that Epinastine exhibited high affinity for CD96, thereby effectively disrupting the interaction between CD96 and PVR. In vitro co-culture experiments further revealed that Epinastine effectively restored the ability of Jurkat cells to secrete IL-2. In the MC38 tumor-bearing model, Epinastine significantly enhanced the infiltration of T cells and NK cells into the tumor site and augmented their secretion of IFN-γ, leading to effective suppression of tumor growth. CONCLUSIONS Our results demonstrated that the development of small molecule inhibitor Epinastine targeting CD96/PVR pathway, which proposed a promising strategy and drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peixin Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe, 462000, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenhui Shen
- Department of Head Neck and Thyroid, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Yang J, Wang H, Liu J, Ma E, Jin X, Li Y, Ma C. Screening approach by a combination of computational and in vitro experiments: identification of fluvastatin sodium as a potential SIRT2 inhibitor. J Mol Model 2024; 30:188. [PMID: 38801625 DOI: 10.1007/s00894-024-05988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Sirtuins (SIRTs) are NAD+-dependent deacetylases that play various roles in numerous pathophysiological processes, holding promise as therapeutic targets worthy of further investigation. Among them, the SIRT2 subtype is closely associated with tumorigenesis and malignancies. Dysregulation of SIRT2 activation can regulate the expression levels of related genes in cancer cells, leading to tumor occurrence and metastasis. METHODS In this study, we used computer simulations to screen for novel SIRT2 inhibitors from the FDA database, based on which 10 compounds with high docking scores and good interactions were selected for in vitro anti-pancreatic cancer metastasis testing and enzyme binding inhibition experiments. The results showed that fluvastatin sodium may possess inhibitory activity against SIRT2. Subsequently, fluvastatin sodium was subjected to molecular docking experiments with various SIRT isoforms, and the combined results from Western blotting experiments indicated its potential as a SIRT2 inhibitor. Next, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations were performed, revealing the binding mode of fluvastatin sodium at the SIRT2 active site, further validating the stability and interaction of the ligand-protein complex under physiological conditions. RESULTS Overall, this study provides a systematic virtual screening workflow for the discovery of SIRT2 activity inhibitors, identifies the potential inhibitory effect of fluvastatin sodium as a lead compound on SIRT2, and opens up a new direction for developing highly active and selectively targeted SIRT2 inhibitors.
Collapse
Affiliation(s)
- Jin Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Jiale Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Enlong Ma
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Xinxin Jin
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yanchun Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China.
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China.
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenhe District, 103 Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
3
|
Zhong Y, Wang Q, Chen ZJ, Wang H, Zhao S. GAA/(Au-Au/IrO 2)@Cu(PABA) reactor with cascade catalytic activity for α-glucosidase inhibitor screening. Anal Chim Acta 2024; 1298:342408. [PMID: 38462333 DOI: 10.1016/j.aca.2024.342408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.
Collapse
Affiliation(s)
- Yingying Zhong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China.
| | - Qing Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Zi-Jian Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
da Fonseca AM, Luthierre Gama Cavalcante A, Mendes AMDS, da Silva FDFC, Ferreira DCL, Ribeiro PRV, Dos Santos JCS, Dos Santos HS, Gaieta EM, Marinho GS, Colares RP, Marinho ES. Phytochemical study of Lantana camara flowers, ecotoxicity, antioxidant, in vitro and in silico acetylcholinesterase: molecular docking, MD, and MM/GBSA calculations. J Biomol Struct Dyn 2023; 41:9282-9296. [PMID: 36326114 DOI: 10.1080/07391102.2022.2141883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Lantana camara L. (Verbenaceae), commonly called lead cambará, has often been used in folk medicine as antiseptic, antispasmodic, against hemorrhages, flu, colds, and diarrheic. This plant is considered a weed and an ornamental and medicinal plant and is an essential source of natural organic compounds, mainly flavonoids. This work aims to investigate the chemical composition and evaluate the biological properties such as antioxidant and acetylcholinesterase of the constituents from L. camara flowers. In addition, the computational simulation was carried out with the constituents identified. The results showed that methanolic extract of the flowers of L. camara presents toxicity, antioxidant activity with 97.8% inhibition percentage in the concentration of 0.25 mg mL-1 against the DPPH radical, and acetylcholinesterase activity. The phytochemical study of extract from L. camara flowers resulted in LC-MS identification of 18 polyphenolic compounds, such as phenolic acid derivatives, phenylethanoid glycosides, and flavonoids. In the in silico study, flavonoid isoverbascoside showed affinity energy of -9.9 kcal.mol-1 with the AChE enzyme. Their phytochemical content, mainly the presence of flavonoids and phenolic compounds in L. camara extracts, may be related to the antioxidant and anticholinesterase potential observed.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | | | - Antônia Mayara Dos Santos Mendes
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | | | - Débora Cristina Lima Ferreira
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, Brazil
| | | | - José Cleiton Sousa Dos Santos
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, Brazil
| | | | - Eduardo Menezes Gaieta
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Gabrielle Silva Marinho
- Theoretical Chemistry and Electrochemistry Group, State University of Ceará, Limoeiro do Norte, Brazil
| | - Regilany Paulo Colares
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, Brazil
| | - Emmanuel Silva Marinho
- Theoretical Chemistry and Electrochemistry Group, State University of Ceará, Limoeiro do Norte, Brazil
| |
Collapse
|
5
|
Lima JPO, da Fonseca AM, Marinho GS, da Rocha MN, Marinho EM, dos Santos HS, Freire RM, Marinho ES, de Lima-Neto P, Fechine PBA. De novo design of bioactive phenol and chromone derivatives for inhibitors of Spike glycoprotein of SARS-CoV-2 in silico. 3 Biotech 2023; 13:301. [PMID: 37588795 PMCID: PMC10425314 DOI: 10.1007/s13205-023-03695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
This work presents the synthesis of 12 phenol and chromone derivatives, prepared by the analogs, and the possibility of conducting an in silico study of its derivatives as a therapeutic alternative to combat the SARS-CoV-2, pathogen responsible for COVID-19 pandemic, using its S-glycoprotein as a macromolecular target. After the initial screening for the ranking of the products, it was chosen which structure presented the best energy bond with the target. As a result, derivative 4 was submitted to a molecular growth study using artificial intelligence, where 8436 initial structures were obtained that passed through the interaction filters and similarity to the active glycoprotein pocket through the MolAICal computational package. Thus, 557 Hits with active configuration were generated, which is very promising compared to the BLA reference link for inhibiting the biological target. Molecular dynamics also simulated these compounds to verify their stability within the active protein site to seek new therapeutic propositions to fight against the pandemic. The Hit 48 and 250 are the most active compounds against SARS-CoV-2. In summary, the results show that the Hit 250 would be more active than the natural compound, which could be further developed for further testing against SARS-CoV-2. The study employs the de novo approach to design new drugs, combining artificial intelligence and molecular dynamics simulations to create efficient molecular structures. This research aims to contribute to the development of effective therapeutic strategies against the pandemic.
Collapse
Affiliation(s)
- Joan Petrus Oliveira Lima
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | - Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis-MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE 62785-000 Brazil
| | - Gabrielle Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Matheus Nunes da Rocha
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Emanuelle Machado Marinho
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | | | | | - Emmanuel Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Pedro de Lima-Neto
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| |
Collapse
|
6
|
Kanwal Q, Ahmed M, Hamza M, Ahmad M, Atiq-Ur-Rehman, Yousaf N, Javaid A, Anwar A, Khan IH, Muddassar M. Curcumin nanoparticles: physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. RSC Adv 2023; 13:22268-22280. [PMID: 37492507 PMCID: PMC10363772 DOI: 10.1039/d3ra01432k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Curcumin is an extensively studied natural compound due to its extensive biological applications. However, there are some drawbacks linked to this compound such as poor absorption, low water-solubility, quick systemic elimination, fast metabolism, poor pharmacokinetics, low bioavailability, low penetration targeting efficacy and low stability. To overcome these drawbacks, curcumin is encapsulated in nano-carriers. In the current studies, we synthesized nanoparticles of curcumin without using nanocarriers by different methods such as nano-suspension (Cur-NSM), sonication (Cur-SM) and anti-solvent precipitation (Cur-ASP) to enhance the solubility of curcumin in water. The prepared nanoparticles were characterized by FTIR, SEM and XRD analysis. These curcumin nanoparticles were screened for their solubilities in water, DPPH scavenging, amylase, α-glucosidase and β-glucosidase enzymatic activities. The particle size of nano-curcumin was found to be in the 47.4-98.7 nm range. The reduction in particle size of curcumin dramatically increases its solubility in water to 79.2 μg mL-1, whereas the solubility of curcumin is just 0.98 μg mL-1. Cur-ASP showed the highest free radical scavenging potential (48.84 ± 0.98%) which was comparable with standard BHT (50.48 ± 1.11%) at 75.0 μg mL-1. As well, Cur-ASP showed the highest inhibition of α-amylase (68.67 ± 1.02%), α-glucosidase (58.30 ± 0.52%), and β-glucosidase (64.80 ± 0.43%) at 100 μg mL-1 which is comparable with standard drug acarbose. The greater surface area of nanoparticles exposes the various groups of curcumin for blocking the binding sites of enzymes. This strategy may be helpful in designing curcumin as a potent therapeutic agent against diabetes mellitus. Further, the molecular interactions of curcumin with α-amylase, α-glucosidase, β-glucosidase, and polyphenol oxidase were assessed by analyzing the plausible binding modes of curcumin in the binding pocket of each receptor. The best binding mode of curcumin was used to make complexes with the target proteins and their stability was confirmed by 50 ns MD simulation.
Collapse
Affiliation(s)
- Qudsia Kanwal
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road Lahore Pakistan
| | - Muhammad Hamza
- Department of Chemistry, The University of Lahore Lahore Pakistan
- Additive Manufacturing Institute, Shenzhen University China
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, College Road Lahore Pakistan
| | - Atiq-Ur-Rehman
- Department of Pharmacy, The University of Lahore Lahore Pakistan
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad Islamabad Pakistan
| | - Arshad Javaid
- Institute of Agricultural Sciences, University of the Punjab Lahore Pakistan
| | - Aneela Anwar
- Basic Sciences and Humanity, University of Engineering and Technology, Kala Shah Kaku Campus Lahore Pakistan
| | - Iqra Haider Khan
- Institute of Agricultural Sciences, University of the Punjab Lahore Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad Islamabad Pakistan
| |
Collapse
|