1
|
Tang W, Jia B, Zhou J, Liu J, Wang J, Ma D, Li P, Chen J. A method using angiotensin converting enzyme immobilized on magnetic beads for inhibitor screening. J Pharm Biomed Anal 2018; 164:223-230. [PMID: 30391811 DOI: 10.1016/j.jpba.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Angiotensin converting enzyme (ACE), fusing with FLAG tag, was overexpressed in human embryonic kidney 293T cells. This recombinant FLAG-tagged ACE was immobilized on anti-FLAG antibody coated magnetic beads by affinity method in crude cell lysate for the first time. The enzyme-immobilized magnetic beads (ACE-MB), without further cleavage procedure, were used directly to establish a cost-effective and reliable method for screening ACE inhibitors by coupling with fluorescence detection. The enzymatic activity of the ACE-MB was validated based on its Michaelian kinetic behavior towards hippuryl-histidyl-leucine by UHPLC-MS/MS method firstly. Then, several conditions were optimized including amount of magnetic beads, incubation temperature and time in the procedure of ACE immobilization and amount of ACE-MB in the microplate operation. Moreover, this screening assay was validated with Z' factors between 0.71 and 0.81 using four known ACE inhibitors (captopril, lisinopril, fosinopril and fosinoprilat). The developed method was applied for the screening of ACE inhibitors from a small compound library of 45 natural products. As a result, epiberberine and fangchinoline with certain ACE inhibitory activities were screened out in the assay and validated. The results demonstrate the usefulness of this screening method using ACE immobilized on magnetic beads and the advantage of great efficiency with respect to both time and reagents for screening ACE inhibitors.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bingjie Jia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jie Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jing Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jiancheng Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
de Almeida FG, Vanzolini KL, Cass QB. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing. J Pharm Biomed Anal 2016; 132:159-164. [PMID: 27728854 DOI: 10.1016/j.jpba.2016.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC50) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening.
Collapse
Affiliation(s)
- Fernando G de Almeida
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil
| | - Kenia L Vanzolini
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil
| | - Quezia B Cass
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
4
|
Feng Q, Hou D, Zhao Y, Xu T, Menkhaus TJ, Fong H. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20958-20967. [PMID: 25396286 DOI: 10.1021/am505722g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
Collapse
Affiliation(s)
- Quan Feng
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University , Wuhu, Anhui 241000, China
| | | | | | | | | | | |
Collapse
|
5
|
Feng Q, Zhao Y, Wei A, Li C, Wei Q, Fong H. Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10390-10397. [PMID: 25093534 DOI: 10.1021/es501845u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 μmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.
Collapse
Affiliation(s)
- Quan Feng
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University , Wuhu, Anhui 241000, China
| | | | | | | | | | | |
Collapse
|