• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643608)   Today's Articles (5)   Subscriber (50559)
For: Singha RK, Yadav A, Shukla A, Kumar M, Bal R. Low temperature dry reforming of methane over Pd-CeO2 nanocatalyst. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.12.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]  Open
Number Cited by Other Article(s)
1
Theoretical insight into the strong size-dependence of dry reforming of methane over Ru/CeO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
2
Jiménez JD, Betancourt LE, Danielis M, Zhang H, Zhang F, Orozco I, Xu W, Llorca J, Liu P, Trovarelli A, Rodríguez JA, Colussi S, Senanayake SD. Identification of Highly Selective Surface Pathways for Methane Dry Reforming Using Mechanochemical Synthesis of Pd-CeO2. ACS Catal 2022;12:12809-12822. [PMID: 36313524 PMCID: PMC9595205 DOI: 10.1021/acscatal.2c01120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/24/2022] [Indexed: 11/30/2022]
3
Rosli SNA, Abidin SZ, Osazuwa OU, Fan X, Jiao Y. The effect of oxygen mobility/vacancy on carbon gasification in nano catalytic dry reforming of methane: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
4
Wang J, Grünbacher M, Penner S, Bekheet MF, Gurlo A. Porous Silicon Oxycarbonitride Ceramics with Palladium and Pd2Si Nanoparticles for Dry Reforming of Methane. Polymers (Basel) 2022;14:polym14173470. [PMID: 36080545 PMCID: PMC9460865 DOI: 10.3390/polym14173470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 01/08/2023]  Open
5
Romano PN, de Carvalho Filho JFS, de Almeida JMAR, Sousa-Aguiar EF. Screening of mono and bimetallic catalysts for the dry reforming of methane. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
6
Sophiana IC, Iskandar F, Devianto H, Nishiyama N, Budhi YW. Coke-Resistant Ni/CeZrO2 Catalysts for Dry Reforming of Methane to Produce Hydrogen-Rich Syngas. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:1556. [PMID: 35564265 PMCID: PMC9101300 DOI: 10.3390/nano12091556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
7
Gendy TS, El-Salamony RA, El-Temtamy SA, Ghoneim SA, El-Hafiz DRA, Ebiad MA, Naggar AME. Optimization of Dry Reforming of Methane over a Ni/MgO Catalyst Using Response Surface Methodology. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
8
Li F, Dong J, Wang M, Lin X, Cai W, Liu X. Ethanol dry reforming over ordered mesoporous Co-Zn composite oxide for syngas production. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
9
Geng H, Yang Z, Li Z, Yu S, Wang J, Zhang L. Effect of oxygen species, catalyst structure and their performance to methane activation over Pd-Pt catalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00500f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Development of Silicalite-1-encapsulated Ni nanoparticle catalyst from amorphous silica-coated Ni for dry reforming of methane: Achieving coke formation suppression and high thermal stability. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
11
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO2 conversion to C1 products. Catal Sci Technol 2021;11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
12
Ahmad YH, Mohamed AT, Kumar A, Al-Qaradawi SY. Solution combustion synthesis of Ni/La2O3 for dry reforming of methane: tuning the basicity via alkali and alkaline earth metal oxide promoters. RSC Adv 2021;11:33734-33743. [PMID: 35497540 PMCID: PMC9042257 DOI: 10.1039/d1ra05511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]  Open
13
Zhang Y, Zeng R, Zu Y, Zhu L, Mei Y, Luo Y, He D. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Recent progress in ceria-based catalysts for the dry reforming of methane: A review. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116606] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
15
Kinetic Regularities of Methane Dry Reforming Reaction on Nickel-Containing Modified Ceria–Zirconia. ENERGIES 2021. [DOI: 10.3390/en14102973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Catalytic Reaction of Carbon Dioxide with Methane on Supported Noble Metal Catalysts. Catalysts 2021. [DOI: 10.3390/catal11020159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
17
Ranjekar AM, Yadav GD. Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
18
One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane. ENERGIES 2020. [DOI: 10.3390/en13225956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
19
Synthesis of Ni-Pd decorated spindle-shape CeO2 for catalytic reduction of nitroarene. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]  Open
20
Shah M, Mondal P, Nayak AK, Bordoloi A. Advanced titania composites for efficient CO2 reforming with methane: Statistical method vs. experiment. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
21
Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
22
Wang H, Srinath NV, Poelman H, Detavernier C, Li P, Marin GB, Galvita VV. Hierarchical Fe-modified MgAl2O4 as a Ni-catalyst support for methane dry reforming. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01119c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
23
Highly Carbon-Resistant Y Doped NiO–ZrOm Catalysts for Dry Reforming of Methane. Catalysts 2019. [DOI: 10.3390/catal9121055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
24
The Reaction Mechanism and Its Kinetic Model of CO2 Reforming with CH4 over Ni-Mg15@HC Catalyst. Catal Letters 2019. [DOI: 10.1007/s10562-019-03052-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
25
Chang K, Zhang H, Cheng MJ, Lu Q. Application of Ceria in CO2 Conversion Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03935] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
26
A review of heterogeneous catalysts for syngas production via dry reforming. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
27
Han J, Liang Y, Qin L, Zhao B, Wang H, Wang Y. Ni@HC Core–Shell Structured Catalysts for Dry Reforming of Methane and Carbon Dioxide. Catal Letters 2019. [DOI: 10.1007/s10562-019-02889-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
28
Hernández-Fontes C, Mendoza-Nieto JA, Lara-García HA, Pfeiffer H. Pentalithium Ferrite (Li5FeO4) as Highly Active Material for Hydrogen Production in the Chemical Looping Partial Oxidation of Methane. Top Catal 2019. [DOI: 10.1007/s11244-019-01175-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
29
Shukla A, Singha RK, Sasaki T, Prasad VVDN, Bal R. Synthesis of Highly Active Pd Nanoparticles Supported Iron Oxide Catalyst for Selective Hydrogenation and Cross‐Coupling Reactions in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201900358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
30
Boaro M, Colussi S, Trovarelli A. Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization. Front Chem 2019;7:28. [PMID: 30838198 PMCID: PMC6382745 DOI: 10.3389/fchem.2019.00028] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]  Open
31
Catalytic performance of perovskite-like oxide doped cerium (La2 − Ce CoO4 ± ) as catalysts for dry reforming of methane. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
32
Park JH, Heo I, Chang TS. Dry reforming of methane over Ni-substituted CaZrNiOx catalyst prepared by the homogeneous deposition method. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]  Open
33
Yao L, Galvez ME, Hu C, Da Costa P. Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium–Zirconium Oxide Catalyst. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
34
Li K, He F, Yu H, Wang Y, Wu Z. Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(1 1 1) surface. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
35
Wang Y, Yao L, Wang Y, Wang S, Zhao Q, Mao D, Hu C. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00584] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
36
Giehr A, Maier L, Schunk SA, Deutschmann O. Thermodynamic Considerations on the Oxidation State of Co/γ-Al2 O3 and Ni/γ-Al2 O3 Catalysts under Dry and Steam Reforming Conditions. ChemCatChem 2018. [DOI: 10.1002/cctc.201701376] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA