1
|
Akhmetova S, Zharmagambetova A, Talgatov E, Auyezkhanova A, Malgazhdarova M, Zhurinov M, Abilmagzhanov A, Jumekeyeva A, Kenzheyeva A. How the Chemical Properties of Polysaccharides Make It Possible to Design Various Types of Organic-Inorganic Composites for Catalytic Applications. Molecules 2024; 29:3214. [PMID: 38999166 PMCID: PMC11243343 DOI: 10.3390/molecules29133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, the use of plant-origin materials has become especially important due to the aggravation of environmental problems and the shortage and high cost of synthetic materials. One of the potential candidates among natural organic compounds is polysaccharides, characterized by a number of advantages over synthetic polymers. In recent years, natural polysaccharides have been used to design composite catalysts for various organic syntheses. This review is devoted to the current state of application of polysaccharides (chitosan, starch, pectin, cellulose, and hydroxyethylcellulose) and composites based on their catalysis. The article is divided into four main sections based on the type of polysaccharide: (1) chitosan-based nanocomposites; (2) pectin-based nanocomposites; (3) cellulose (hydroxyethylcellulose)-based nanocomposites; and (4) starch-based nanocomposites. Each section describes and summarizes recent studies on the preparation and application of polysaccharide-containing composites in various chemical transformations. It is shown that by modifying polysaccharides, polymers with special properties can be obtained, thus expanding the range of biocomposites for catalytic applications.
Collapse
Affiliation(s)
| | | | | | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan; (S.A.); (A.Z.); (E.T.); (M.M.); (M.Z.); (A.A.); (A.J.); (A.K.)
| | | | | | | | | | | |
Collapse
|
2
|
Increasing the number of active centers and matching acid micro-environment by the design of phosphorus immobilized for boosting catalytic activity. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci Rep 2022; 12:8642. [PMID: 35606381 PMCID: PMC9126885 DOI: 10.1038/s41598-022-10774-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
AbstractIn this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV–Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH. The Cs-EDTA-Cell nanocatalyst can be easily recovered from the reaction mixture by using filtration and reused for at least five times without significant decrease in its catalytic activity. In general, the Cs-EDTA-Cell network, as a heterogeneous catalyst, demonstrated excellent catalytic activity in an environmentally-benign solvent to afford desired products in short reaction times and required simple experimental and work-up procedure compared to many protocols using similar catalytic systems.
Collapse
|
4
|
Efficient Synthesis of Biodiesel Catalyzed by Chitosan-Based Catalysts. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/8971613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Catalysts play an important role in the preparation of biodiesel. It is of great significance to study catalysts with high efficiency, low cost, and easy preparation. Compared with the homogeneous catalyst system, the heterogeneous catalyst is easy to separate and has a better catalytic effect. In heterogeneous catalysts, supports and preparation methods have important effects on the dispersion of active centers and the overall performance of catalysts. However, the supports of existing solid catalysts have defects in porosity, structural uniformity, stability, and specific surface area, and the preparation methods cannot stabilize covalent bonds or ionic bonds to bind catalytic sites. Considering the activity, preparation method, and cost of the catalyst, biomass-based catalyst is the best choice, but the specific surface area of the biomass-based catalyst is relatively low, the distribution of active centers is uneven, and it is easy to lose. Therefore, the hybrid carrier of biomass-based catalyst and other materials can not only improve the specific surface area but also make the distribution of active centers uniform and the catalytic activity better. Based on this, we summarized the application of chitosan hybrid material catalysts in biodiesel. The preparation, advantages and disadvantages, reaction conditions, and so on of chitosan-based catalysts were mainly concerned. At the same time, exploring the effects of different types of chitosan-based catalysts on the preparation of biodiesel and exploring the process technology with high efficiency and low consumption is the focus of this paper.
Collapse
|
5
|
Wu Y, Su M, Xiao Y, Guang B, Liu Y. Heteropolyacid-Based Poly(ionic liquid)s for the Selective Oxidation of Cyclohexene to 2-Cyclohexene-1-one. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuefeng Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Miaojun Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yahui Xiao
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Binxiong Guang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
- Henan Engineering Research Center of Resource & Energy Recovery from Waste, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
6
|
Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles. Polymers (Basel) 2021; 13:polym13111728. [PMID: 34070526 PMCID: PMC8198799 DOI: 10.3390/polym13111728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N′-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72–78% to 79–83% to 84–87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.
Collapse
|
7
|
de Araújo ML, Correia GA, Carvalho WA, Shul’pina LS, Kozlov YN, Shul’pin GB, Mandelli D. Transformation of biomass derivatives in aqueous medium: Oxidation of ethanol from sugarcane and acetol from biodiesel glycerol catalyzed by Fe3+- H2O2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Dhakshinamoorthy A, Jacob M, Vignesh NS, Varalakshmi P. Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. Int J Biol Macromol 2020; 167:807-833. [PMID: 33144253 DOI: 10.1016/j.ijbiomac.2020.10.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Chitosan is one of the readily available polymers with relatively high abundance, biodegradable and sustainable materials with divergent functional groups that are employed in broad range of applications. Chitosan is widely used in many fields like adsorption, drug carrier for therapeutic activity, environmental remediation, drug formulation and among others. One of the unique features of chitosan is that it can be transformed to other forms like beads, films, flakes, sponges and fibres depending upon the applications. This review is aimed at showing the potential applications of chitosan and its modified solids in organic transformations. The number of existing articles is organized based on the nature of materials and subsequently with the types of reactions. After a brief description on the structural features of chitosan, properties, characterization methods including various analytical/microscopic techniques and some of the best practices to be followed in catalysis are also discussed. The next section of this review describes the catalytic activity of native chitosan without any modifications while the subsequent sections provide the catalytic activity of chitosan derivatives, chitosan covalently modified with metal complexes/salts through linkers and chitosan as support for metal nanoparticles (NPs). These sections discuss number of organic reactions that include Knoevenagel condensation, oxidation, reduction, heterocycles synthesis, cross-coupling reactions and pollutant degradation among others. A separate section provides the catalytic applications of chitosan and its modified forms for the production of fatty acid methyl esters (FAME) through esterification/transesterification reactions. The final section summarizes our views on the future directions of this field in the coming years.
Collapse
Affiliation(s)
| | - Manju Jacob
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|
9
|
Li Y, Li P, Cao P, Li Y, Wang X, Wang S. Fabrication of Trifunctional Polyoxometalate-Decorated Chitosan Nanofibers for Selective Production of 2,5-Diformylfuran. CHEMSUSCHEM 2019; 12:3515-3523. [PMID: 31225716 DOI: 10.1002/cssc.201901384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Trifunctional catalysts based on polyoxometalate (POM) decorating chitosan nanofibers (H5 PMo10 V2 O40 /chitosan nanofibers, abbreviated as HPMoV/CS-f), synthesized by using the electrospinning method, realized highly efficient oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Decorating chitosan nanofibers with POMs generated enhanced catalytic activity by merging their unique individual properties of redox ability, Brønsted acidity, basicity, and nanofiber structure with higher surface area. As a result, HPMoV/CS-f(25) (with 25 representing the POM amount) was found to be the most active catalyst in the aerobic oxidation of HMF, resulting in 94.1 % DFF yield at 96.2 % conversion in DMSO at 120 °C for 6 h, whereas 56.2 % DFF yield at 95.0 % conversion was obtained in water at 140 °C for 8 h. Importantly, DFF could be produced in one pot in one step to give 61.9 and 31.4 % yield, respectively, directly from fructose and glucose under the reaction conditions of 140 °C, 6 h in DMSO, which was owing to the suitable balance of Brønsted acidity and basicity of the trifunctional HPMoV/CS-f(25). Moreover, HPMoV/CS-f showed good stability and ability to be reused at least ten times without leaching of the POMs from the chitosan nanofibers.
Collapse
Affiliation(s)
- Yiming Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Peili Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Ping Cao
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Ying Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Shengtian Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
10
|
Sulfonated-polyvinyl amine coated on Fe3O4 nanoparticles: a high-loaded and magnetically separable acid catalyst for multicomponent reactions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01700-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
|