1
|
Wang W, Tachibana R, Zou Z, Chen D, Zhang X, Lau K, Pojer F, Ward TR, Hu X. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology. Angew Chem Int Ed Engl 2023; 62:e202311896. [PMID: 37671593 DOI: 10.1002/anie.202311896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.
Collapse
Affiliation(s)
- Weijin Wang
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Zhi Zou
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Dongping Chen
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Wang Z, Ma N, Lu X, Liu M, Liu T, Liu Q, Solan GA, Sun WH. Robust and efficient transfer hydrogenation of carbonyl compounds catalyzed by NN-Mn(I) complexes. Dalton Trans 2023; 52:10574-10583. [PMID: 37458677 DOI: 10.1039/d3dt02022c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A series of manganese(I) carbonyl complexes bearing structurally related NN- and NNN-chelating ligands have been synthesized and assessed as catalysts for transfer hydrogenation (TH). Notably, the NN-systems based on N-R functionalized 5,6,7,8-tetrahydroquinoline-8-amines, proved the most effective in the manganese-promoted conversion of acetophenone to 1-phenylethanol. In particular, the N-isopropyl derivative, Mn1, when conducted in combination with t-BuONa, was the standout performer mediating not only the reduction of acetophenone but also a range of carbonyl substrates including (hetero)aromatic-, aliphatic- and cycloalkyl-containing ketones and aldehydes with especially high values of TON (up to 17 200; TOF of 3550 h-1). These findings, obtained through a systematic variation of the N-R group of the NN ligand, are consistent with an outer-sphere mechanism for the hydrogen transfer. As a more general point, this Mn-based catalytic TH protocol offers an attractive and sustainable alternative for producing alcoholic products from carbonyl substrates.
Collapse
Affiliation(s)
- Zheng Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ning Ma
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiaochi Lu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Ming Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tian Liu
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingbin Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Gregory A Solan
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
3
|
Manganese(I)-Catalyzed Asymmetric (Transfer) Hydrogenation of Ketones: An Insight into the Effect of Chiral PNN and NN ligands. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Wiedemaier F, Belaj F, Mösch-Zanetti NC. Elucidating the role of amine donors in manganese catalyzed transfer hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Wang L, Lin J, Xia C, Sun W. Manganese-catalyzed asymmetric transfer hydrogenation of hydrazones. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Császár Z, Kovács R, Fonyó M, Simon J, Bényei A, Lendvay G, Bakos J, Farkas G. Testing the role of the backbone length using bidentate and tridentate ligands in manganese-catalyzed asymmetric hydrogenation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Li F, Long L, He YM, Li Z, Chen H, Fan QH. Manganese-Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022; 61:e202202972. [PMID: 35438237 DOI: 10.1002/anie.202202972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 12/23/2022]
Abstract
A unique family of chiral peraza N6 -macrocyclic ligands, which are conformationally rigid and have a tunable saddle-shaped cavity, is described. Utilizing their manganese(I) complexes, the first example of earth-abundant transition metal-catalyzed asymmetric formal anti-Markovnikov hydroamination of allylic alcohols was realized, providing a practical access to synthetically important chiral γ-amino alcohols in excellent yields and enantioselectivities (up to 99 % yield and 98 % ee). The single-crystal structure of a MnI complex indicates that the manganese atom coordinates with the chiral dialkylamine moiety in a bidentate fashion. Further DFT calculations revealed that five of the six nitrogen atoms in the ligand were engaged in multiple noncovalent interactions with Mn, an isopropanol molecule, and a β-amino ketone intermediate via coordination, hydrogen bonding, and/or CH⋅⋅⋅π interactions in the transition state, showing a remarkable role of the macrocyclic framework.
Collapse
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
van Beek C, Samoshin VV. Conformationally locked cis-1,2-diaminocyclohexane-based axially chiral ligands for asymmetric catalysis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
10
|
Li F, Long L, He Y, Li Z, Chen H, Fan Q. Manganese‐Catalyzed Asymmetric Formal Hydroamination of Allylic Alcohols: A Remarkable Macrocyclic Ligand Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Faju Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Zeyu Li
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
11
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Carr CR, Vesto JI, Xing X, Fettinger JC, Berben LA. Aluminum‐Ligand Cooperative O−H Bond Activation Initiates Catalytic Transfer Hydrogenation. ChemCatChem 2022. [DOI: 10.1002/cctc.202101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cody R. Carr
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - James I. Vesto
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Xiujing Xing
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Louise A. Berben
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| |
Collapse
|
13
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
14
|
Friães S, Realista S, Mourão H, Royo B. N‐Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Beatriz Royo
- Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier Av. da República 2780-157 Oeiras PORTUGAL
| |
Collapse
|
15
|
Kumah RT, Vijayan P, Ojwach SO. Carboxamide carbonyl-ruthenium(ii) complexes: detailed structural and mechanistic studies in the transfer hydrogenation of ketones. NEW J CHEM 2022. [DOI: 10.1039/d1nj05657c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The organo-carboxamide carbonyl-ruthenium(ii) complexes displayed moderate catalytic activities in the transfer hydrogenation of a broad spectrum of ketones.
Collapse
Affiliation(s)
- Robert T. Kumah
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Paranthaman Vijayan
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Stephen O. Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
16
|
|
17
|
Shashikumar K, Maldode SB, Sajjanar S, Hegde SN, Sattineni S, Avasare VD, Gadakh AV, Ganesh S, Sathiyanarayanan AM. Phosphine‐Free Ruthenium Complex for Hydrogenation of Carbonyl Compounds: Synthesis and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202101775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- K. Shashikumar
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Suraj B. Maldode
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Sachinkumar Sajjanar
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Shivaprasad N. Hegde
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Suribabu Sattineni
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Vidya D. Avasare
- Department of Chemistry Sir Prashurambhau College Pune 411030 Maharashtra India
| | - Amol V. Gadakh
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - Sambasivam Ganesh
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| | - A. M. Sathiyanarayanan
- Anthem Biosciences Pvt. Ltd., #49 Bommasandra Industrial Area Bommasandra Bangalore 560099 India
| |
Collapse
|
18
|
Das K, Barman MK, Maji B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun (Camb) 2021; 57:8534-8549. [PMID: 34369488 DOI: 10.1039/d1cc02512k] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catalytic hydrogen transfer reactions have enormous academic and industrial applications for the production of diverse molecular scaffolds. Over the past few decades, precious late transition-metal catalysts were employed for these reactions. The early transition metals have recently gained much attention due to their lower cost, less toxicity, and overall sustainability. In this regard, manganese, which is the third most abundant transition metal in the Earth's crust, has emerged as a viable alternative. However, the key to the success of such manganese-based complexes lies in the multifunctional ligand design and choice of appropriate ancillary ligands, which helps them mimic and, even in some cases, supersede noble metals' activities. The metal-ligand bifunctionality, achieved via deprotonation of the acidic C-H or N-H bonds, is one of the powerful strategies employed for this purpose. Alongside, the ligand hemilability in which a weakly chelating group tunes in between the coordinated and uncoordinated stages could effectively stabilize the reactive intermediates, thereby facilitating substrate activation and catalysis. Redox non-innocent ligands acting as an electron sink, thereby helping the metal center in steps gaining or losing electrons, and non-classical metal-ligand cooperativity has also played a significant role in the ligand design for manganese catalysis. The strategies were not only employed for the chemoselective hydrogenation of different reducible functionalities but also for the C-X (X = C/N) coupling reactions via HT and downstream cascade processes. This article features multifunctional ligand-based manganese complexes, highlighting the importance of ligand design and choice of ancillary ligands for achieving the desired catalytic activity and selectivity for HT reactions. We have also discussed the detailed reaction pathways for metal complexes involving bifunctionality, hemilability, redox activity, and indirect metal-ligand cooperativity. The synthetic utilization of those complexes in different organic transformations has also been detailed.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
19
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
20
|
Wang L, Lin J, Sun Q, Xia C, Sun W. Amino Acid Derived Chiral Aminobenzimidazole Manganese Catalysts for Asymmetric Transfer Hydrogenation of Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
21
|
Zhang GY, Ruan SH, Li YY, Gao JX. Manganese catalyzed asymmetric transfer hydrogenation of ketones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Buhaibeh R, Duhayon C, Valyaev DA, Sortais JB, Canac Y. Cationic PCP and PCN NHC Core Pincer-Type Mn(I) Complexes: From Synthesis to Catalysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ruqaya Buhaibeh
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, Toulouse CEDEX 4 31077, France
| | - Carine Duhayon
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, Toulouse CEDEX 4 31077, France
| | - Dmitry A. Valyaev
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, Toulouse CEDEX 4 31077, France
| | - Jean-Baptiste Sortais
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, Toulouse CEDEX 4 31077, France
- Institut Universitaire de France, 1 rue Descartes, Paris CEDEX 5 75231, France
| | - Yves Canac
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, Toulouse CEDEX 4 31077, France
| |
Collapse
|
23
|
Seo CSG, Tsui BTH, Gradiski MV, Smith SAM, Morris RH. Enantioselective direct, base-free hydrogenation of ketones by a manganese amido complex of a homochiral, unsymmetrical P–N–P′ ligand. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00446h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Base-free direct hydrogenation of ketones using a Mn(PNP′)(CO)2 complex is more enantioselective than that of a related base-activated iron complex.
Collapse
|
24
|
Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 2021; 50:3211-3237. [DOI: 10.1039/d0cs00082e] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on asymmetric direct and transfer hydrogenation with first-row transition metal complexes. The reaction mechanisms and the models of enantiomeric induction were summarized and emphasized.
Collapse
Affiliation(s)
- Jialin Wen
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fangyuan Wang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
25
|
Agbossou-Niedercorn F, Michon C. Bifunctional homogeneous catalysts based on first row transition metals in asymmetric hydrogenation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Zeng L, Yang H, Zhao M, Wen J, Tucker JHR, Zhang X. C1-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04206] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liyao Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Huaxin Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Menglong Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - James H. R. Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| |
Collapse
|
27
|
Rahaman SMW, Pandey DK, Rivada‐Wheelaghan O, Dubey A, Fayzullin RR, Khusnutdinova JR. Hydrogenation of Alkenes Catalyzed by a Non‐pincer Mn Complex. ChemCatChem 2020. [DOI: 10.1002/cctc.202001158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S. M. Wahidur Rahaman
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Dilip K. Pandey
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Orestes Rivada‐Wheelaghan
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Abhishek Dubey
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences 8 Arbuzov Street Kazan 420088 Russia
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
28
|
Zhang L, Wang Z, Han Z, Ding K. Manganese-Catalyzed anti-Selective Asymmetric Hydrogenation of α-Substituted β-Ketoamides. Angew Chem Int Ed Engl 2020; 59:15565-15569. [PMID: 32449804 DOI: 10.1002/anie.202006383] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/24/2020] [Indexed: 12/19/2022]
Abstract
A Mn-catalyzed diastereo- and enantioselective hydrogenation of α-substituted β-ketoamides has been realized for the first time under dynamic kinetic resolution conditions. anti-α-Substituted β-hydroxy amides, which are useful building blocks for the synthesis of bioactive molecules and chiral drugs, were prepared in high yields with excellent selectivity (up to >99 % dr and >99 % ee) and unprecedentedly high activity (TON up to 10000). The origin of the excellent stereoselectivity was clarified by DFT calculations.
Collapse
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
29
|
Murayama H, Heike Y, Higashida K, Shimizu Y, Yodsin N, Wongnongwa Y, Jungsuttiwong S, Mori S, Sawamura M. Iridium‐Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogen‐Bonding and
sp
3
‐C−H Noncovalent Interactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hiroaki Murayama
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Yoshito Heike
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Kosuke Higashida
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Yohei Shimizu
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Nuttapon Yodsin
- Center for Organic Electronic and Alternative Energy Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Ubon Ratchathani University Ubon Ratchathani 34190 Thailand
| | - Yutthana Wongnongwa
- Center for Organic Electronic and Alternative Energy Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Ubon Ratchathani University Ubon Ratchathani 34190 Thailand
| | - Siriporn Jungsuttiwong
- Center for Organic Electronic and Alternative Energy Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Ubon Ratchathani University Ubon Ratchathani 34190 Thailand
| | - Seiji Mori
- Institute of Quantum Beam Science Ibaraki University Mito Ibaraki 310-8512 Japan
| | - Masaya Sawamura
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
30
|
Zhang L, Wang Z, Han Z, Ding K. Manganese‐Catalyzed
anti
‐Selective Asymmetric Hydrogenation of α‐Substituted β‐Ketoamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
31
|
Azouzi K, Bruneau-Voisine A, Vendier L, Sortais JB, Bastin S. Asymmetric transfer hydrogenation of ketones promoted by manganese(I) pre-catalysts supported by bidentate aminophosphines. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Zhang C, Li Z, Chen J, Qi S, Fang Y, Zhang S, Ren C, Lu F, Liang Z, Jiang S, Jia X, Yu S, Zhang G. Base-Mediated Amination of Alcohols Using Amidines. J Org Chem 2020; 85:7728-7738. [DOI: 10.1021/acs.joc.0c00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | | | | | | | | | | | | | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | | | | | | |
Collapse
|
33
|
Abubakar S, Bala MD. Transfer Hydrogenation of Ketones Catalyzed by Symmetric Imino-N-heterocyclic Carbene Co(III) Complexes. ACS OMEGA 2020; 5:2670-2679. [PMID: 32095690 PMCID: PMC7033672 DOI: 10.1021/acsomega.9b03181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of new moisture-sensitive imine-functionalized N-heterocyclic carbene (NHC) precursor salts [1-(2-[(hydroxyl-benzylidene)-amino]-ethyl)-3-R-3H-imidazole-1-ium bromide; R = methyl (1a), ethyl (1b), and benzyl (1c)] is reported. Subsequent deprotonation of 1a-c and coordination of the in situ generated NHC ligands to CoBr2 led to the isolation of air-stable six-coordinate Co(III) complexes 2a-c, respectively. All the salts and complexes were fully characterized. Single-crystal X-ray analysis of 2a and 2c showed octahedral Co centers hexacoordinated to two NHC carbons, two imine nitrogen atoms, and two phenolate oxygens in the form [C^N^O(Co3+)C^N^O]. The complexes were used in the catalytic transfer hydrogenation (CTH) of a range of ketones in 2-propanol as the solvent and hydrogen donor. Based on a low catalyst concentration of 0.4 mol %, significant conversions in the range of 70-99% were recorded at high turnover frequencies up to 1635 h-1. A mechanism to account for the steps involved in the CTH of cyclohexanone by complex 2a is proposed and supported by data from cyclic voltammetry, low-resolution mass spectrometry, UV, and IR spectroscopic techniques.
Collapse
|
34
|
Zhou Q, Meng W, Feng X, Du H, Yang J. Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of bulky aryl ketones with ammonia borane. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Lupp D, Huang KW. The Importance of Metal–Ligand Cooperativity in the Phosphorus–Nitrogen PN3P Platform: A Computational Study on Mn-Catalyzed Pyrrole Synthesis. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Lupp
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
36
|
Passera A, Mezzetti A. Retracted: The Manganese(I)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alessandro Passera
- Departement Chemie und Angewandte Biowissenschaften Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| | - Antonio Mezzetti
- Departement Chemie und Angewandte Biowissenschaften Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| |
Collapse
|
37
|
Retracted: The Manganese(I)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege. Angew Chem Int Ed Engl 2019; 59:187-191. [DOI: 10.1002/anie.201912605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Indexed: 12/22/2022]
|
38
|
van Putten R, Benschop J, de Munck VJ, Weber M, Müller C, Filonenko GA, Pidko EA. Efficient and Practical Transfer Hydrogenation of Ketones Catalyzed by a Simple Bidentate Mn-NHC Complex. ChemCatChem 2019; 11:5232-5235. [PMID: 31894188 PMCID: PMC6919935 DOI: 10.1002/cctc.201900882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Catalytic reductions of carbonyl-containing compounds are highly important for the safe, sustainable, and economical production of alcohols. Herein, we report on the efficient transfer hydrogenation of ketones catalyzed by a highly potent Mn(I)-NHC complex. Mn-NHC 1 is practical at metal concentrations as low as 75 ppm, thus approaching loadings more conventionally reserved for noble metal based systems. With these low Mn concentrations, catalyst deactivation is found to be highly temperature dependent and becomes especially prominent at increased reaction temperature. Ultimately, understanding of deactivation pathways could help close the activity/stability-gap with Ru and Ir catalysts towards the practical implementation of sustainable earth-abundant Mn-complexes.
Collapse
Affiliation(s)
- Robbert van Putten
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Joeri Benschop
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Vincent J. de Munck
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Manuela Weber
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34/36BerlinD-14195Germany
| | - Christian Müller
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstraße 34/36BerlinD-14195Germany
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering Faculty of Applied SciencesDelft University of TechnologyVan der Maasweg 9Delft2629 HZ (TheNetherlands
| |
Collapse
|
39
|
Vigneswaran V, MacMillan SN, Lacy DC. β-Amino Phosphine Mn Catalysts for 1,4-Transfer Hydrogenation of Chalcones and Allylic Alcohol Isomerization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vipulan Vigneswaran
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
40
|
van Putten R, Filonenko GA, Gonzalez de Castro A, Liu C, Weber M, Müller C, Lefort L, Pidko E. Mechanistic Complexity of Asymmetric Transfer Hydrogenation with Simple Mn-Diamine Catalysts. Organometallics 2019; 38:3187-3196. [PMID: 31474784 PMCID: PMC6713403 DOI: 10.1021/acs.organomet.9b00457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/16/2022]
Abstract
The catalytic asymmetric transfer hydrogenation (ATH) of ketones is a powerful methodology for the practical and efficient installation of chiral centers. Herein, we describe the synthesis, characterization, and catalytic application of a series of manganese complexes bearing simple chiral diamine ligands. We performed an extensive experimental and computational mechanistic study and present the first detailed experimental kinetic study of Mn-catalyzed ATH. We demonstrate that conventional mechanistic approaches toward catalyst optimization fail and how apparently different precatalysts lead to identical intermediates and thus catalytic performance. Ultimately, the Mn-N,N complexes under study enable quantitative ATH of acetophenones to the corresponding chiral alcohols with 75-87% ee.
Collapse
Affiliation(s)
- Robbert van Putten
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | | | - Chong Liu
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Manuela Weber
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Fabeckstrasse
34/36, D-14195 Berlin, Germany
| | - Christian Müller
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Fabeckstrasse
34/36, D-14195 Berlin, Germany
| | - Laurent Lefort
- InnoSyn
B.V, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Evgeny Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- TheoMAT
Group, ChemBio Cluster, ITMO University, Lomonosova str. 9, Saint Petersburg, 191002, Russian Federation
| |
Collapse
|
41
|
Passera A, Mezzetti A. Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900671] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Passera
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Antonio Mezzetti
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
42
|
Wei D, Dorcet V, Darcel C, Sortais JB. Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes. CHEMSUSCHEM 2019; 12:3078-3082. [PMID: 30570829 DOI: 10.1002/cssc.201802636] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Indexed: 06/09/2023]
Abstract
A practical and sustainable synthesis of substituted quinolines was achieved through the annulation of 2-aminobenzyl alcohol with various secondary alcohols, ketones, aldehydes, or nitriles, under hydrogen-borrowing conditions. Under the catalysis of well-defined rhenium complexes bearing tridentate diphosphinoamino ligands, the reaction proceeded efficiently (31 examples were isolated with yields up to 96 %) affording a variety of quinoline derivatives.
Collapse
Affiliation(s)
- Duo Wei
- CNRS, ISCR-UMR 6226, Université Rennes 1, 35000, Rennes, France
- LCC-CNRS, CNRS, UPS, Université de Toulouse, 31000, Toulouse, France
| | - Vincent Dorcet
- CNRS, ISCR-UMR 6226, Université Rennes 1, 35000, Rennes, France
| | | | - Jean-Baptiste Sortais
- LCC-CNRS, CNRS, UPS, Université de Toulouse, 31000, Toulouse, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
43
|
Kadassery KJ, MacMillan SN, Lacy DC. Resurgence of Organomanganese(I) Chemistry. Bidentate Manganese(I) Phosphine–Phenol(ate) Complexes. Inorg Chem 2019; 58:10527-10535. [DOI: 10.1021/acs.inorgchem.9b00941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karthika J. Kadassery
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
44
|
Ling F, Hou H, Chen J, Nian S, Yi X, Wang Z, Song D, Zhong W. Highly Enantioselective Synthesis of Chiral Benzhydrols via Manganese Catalyzed Asymmetric Hydrogenation of Unsymmetrical Benzophenones Using an Imidazole-Based Chiral PNN Tridentate Ligand. Org Lett 2019; 21:3937-3941. [DOI: 10.1021/acs.orglett.9b01056] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Huacui Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Jiachen Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Sanfei Nian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Xiao Yi
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Ze Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Dingguo Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
45
|
Sultana S, Borah G, Gogoi PK. Mont-K10 Supported Fe(II) Schiff-Base Complex as an Efficient Catalyst for Hydrogenation of Ketones. Catal Letters 2019. [DOI: 10.1007/s10562-019-02810-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Buhaibeh R, Filippov OA, Bruneau‐Voisine A, Willot J, Duhayon C, Valyaev DA, Lugan N, Canac Y, Sortais J. Phosphine‐NHC Manganese Hydrogenation Catalyst Exhibiting a Non‐Classical Metal‐Ligand Cooperative H
2
Activation Mode. Angew Chem Int Ed Engl 2019; 58:6727-6731. [DOI: 10.1002/anie.201901169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ruqaya Buhaibeh
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS)Russian Academy of Sciences 28 Vavilov str., GSP-1, B-334 Moscow 119991 Russia
| | - Antoine Bruneau‐Voisine
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
- Univ RennesCNRS, ISCR—UMR 6226 35000 Rennes France
| | - Jérémy Willot
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Carine Duhayon
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Dmitry A. Valyaev
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Noël Lugan
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Jean‐Baptiste Sortais
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
- Institut Universitaire de France 1 rue Descartes 75231 Paris Cedex 05 France
| |
Collapse
|
47
|
Wei D, Bruneau‐Voisine A, Dubois M, Bastin S, Sortais J. Manganese‐Catalyzed Transfer Hydrogenation of Aldimines. ChemCatChem 2019. [DOI: 10.1002/cctc.201900314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Duo Wei
- Univ RennesCNRS, ISCR – UMR 6226 35000 Rennes France
- LCC-CNRS, CNRS, UPSUniversité de Toulouse Toulouse France
| | - Antoine Bruneau‐Voisine
- Univ RennesCNRS, ISCR – UMR 6226 35000 Rennes France
- LCC-CNRS, CNRS, UPSUniversité de Toulouse Toulouse France
| | - Maxime Dubois
- LCC-CNRS, CNRS, UPSUniversité de Toulouse Toulouse France
| | | | - Jean‐Baptiste Sortais
- LCC-CNRS, CNRS, UPSUniversité de Toulouse Toulouse France
- Institut Universitaire de France 1 rue Descartes 75231 Paris Cedex 05 France
| |
Collapse
|
48
|
Buhaibeh R, Filippov OA, Bruneau‐Voisine A, Willot J, Duhayon C, Valyaev DA, Lugan N, Canac Y, Sortais J. Phosphine‐NHC Manganese Hydrogenation Catalyst Exhibiting a Non‐Classical Metal‐Ligand Cooperative H
2
Activation Mode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruqaya Buhaibeh
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Oleg A. Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS)Russian Academy of Sciences 28 Vavilov str., GSP-1, B-334 Moscow 119991 Russia
| | - Antoine Bruneau‐Voisine
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
- Univ RennesCNRS, ISCR—UMR 6226 35000 Rennes France
| | - Jérémy Willot
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Carine Duhayon
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Dmitry A. Valyaev
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Noël Lugan
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Jean‐Baptiste Sortais
- LCC-CNRSUniversité de Toulouse, CNRSUPS 205 route de Narbonne 31077 Toulouse Cedex 4 France
- Institut Universitaire de France 1 rue Descartes 75231 Paris Cedex 05 France
| |
Collapse
|
49
|
Dubey A, Rahaman SMW, Fayzullin RR, Khusnutdinova JR. Transfer Hydrogenation of Carbonyl Groups, Imines and
N
‐Heterocycles Catalyzed by Simple, Bipyridine‐Based Mn
I
Complexes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900358] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishek Dubey
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
- Current address: Ram Jaipal College (A Post Graduate Unit of Jai Prakash University) Dak Bunglow Road Saran, Chhapra Bihar-841301 India
| | - S. M. Wahidur Rahaman
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific CenterRussian Academy of Sciences Arbuzov Street 8 Kazan 420088 Russian Federation
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis UnitOkinawa Institute of Science and Technology 1919-1 Tancha Onna-son, Okinawa 904-0495 Japan
| |
Collapse
|
50
|
Zhang L, Tang Y, Han Z, Ding K. Lutidine‐Based Chiral Pincer Manganese Catalysts for Enantioselective Hydrogenation of Ketones. Angew Chem Int Ed Engl 2019; 58:4973-4977. [DOI: 10.1002/anie.201814751] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yitian Tang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Zhaobin Han
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Collaborative Innovation Center of Chemical Science and EngineeringNankai University Tianjin 300071 China
| |
Collapse
|