1
|
Ikhlaq A, Kanwal M, Rizvi OS, Ramzan N, Akram A, Qazi UY, Qi F, Hassan SU, Javaid R. Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2025; 193:374-384. [DOI: 10.1016/j.psep.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Prada-Vásquez MA, Simarro-Gimeno C, Vidal-Barreiro I, Cardona-Gallo SA, Pitarch E, Hernández F, Torres-Palma RA, Chica A, Navarro-Laboulais J. Application of catalytic ozonation using Y zeolite in the elimination of pharmaceuticals in effluents from municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171625. [PMID: 38467258 DOI: 10.1016/j.scitotenv.2024.171625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Catalytic ozonation using faujasite-type Y zeolite with two different SiO2/Al2O3 molar ratios (60 and 12) was evaluated for the first time in the removal of 25 pharmaceutical compounds (PhCs) present in real effluents from two municipal wastewater treatment plants both located in the Mediterranean coast of Spain. Additionally, control experiments including adsorption and direct ozonation, were conducted to better understand the fundamental aspects of the different individual systems in wastewater samples. Commercial zeolites were used in sodium form (NaY). The results showed that the simultaneous use of ozone and NaY zeolites significantly improved the micropollutants degradation rate, able to degrade 95 % of the total mixture of PhCs within the early 9 min using the zeolite NaY-12 (24.4 mg O3 L-1 consumed), while 12 min of reaction with the zeolite NaY-60 (31 mg O3 L-1 consumed). In the case of individual experiments, ozonation removed 95 % of the total mixture of PhCs after 25 min (46.2 mg O3 L-1 consumed), while the direct adsorption, after 60 min of contact time, eliminated 30 % and 44 % using the NaY-12 and NaY-60 zeolites, respectively. Results showed that the Brønsted acid sites seemed to play an important role in the effectiveness of the treatment with ozone. Finally, the environmental assessment showed that the total risk quotients of pharmaceuticals were reduced between 87 %-99 % after ozonation in the presence of NaY-60 and NaY-12 zeolites. The results of this study demonstrate that catalytic ozonation using NaY zeolites as catalysts is a promising alternative for micropollutant elimination in real-world wastewater matrices.
Collapse
Affiliation(s)
- María A Prada-Vásquez
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.; Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Geociencias y Medioambiente, Colombia
| | - Claudia Simarro-Gimeno
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Isabel Vidal-Barreiro
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Santiago A Cardona-Gallo
- Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Geociencias y Medioambiente, Colombia
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Antonio Chica
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - J Navarro-Laboulais
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Ikhlaq A, Masood Z, Qazi UY, Raashid M, Rizvi OS, Aziz HA, Saad M, Qi F, Javaid R. Efficient treatment of veterinary pharmaceutical industrial wastewater by catalytic ozonation process: degradation of enrofloxacin via molecular ozone reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22187-22197. [PMID: 38403826 DOI: 10.1007/s11356-024-32605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The study focused on the efficacious performance of bimetallic Fe-Zn loaded 3A zeolite in catalytic ozonation for the degradation of highly toxic veterinary antibiotic enrofloxacin in wastewater of the pharmaceutical industry. Batch experiments were conducted in a glass reactor containing a submerged pump holding catalyst pellets at suction. The submerged pump provided the agitation and recirculation across the solution for effective contact with the catalyst. The effect of ozone flow (0.8-1.55 mg/min) and catalyst dose (5-15 g/L) on the enrofloxacin degradation and removal of other conventional pollutants COD, BOD5, turbidity was studied. In batch experiments, 10 g of Fe-Zn 3A zeolite efficiently removed 92% of enrofloxacin, 77% of COD, 69% BOD5, and 61% turbidity in 1 L sample of pharmaceutical wastewater in 30 min at 1.1 mg/min of O3 flow. The catalytic performance of Fe-Zn 3A zeolite notably exceeded the removal efficiencies of 52%, 51%, 52%, and 59% for enrofloxacin, COD, BOD5, and turbidity, respectively, achieved with single ozonation process. Furthermore, an increase in the biodegradability of treated pharmaceutical industrial wastewater was observed and made biodegradable easily for subsequent treatment.
Collapse
Affiliation(s)
- Amir Ikhlaq
- Institute of Environmental Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Zafar Masood
- Institute of Environmental Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, P.O Box 1803, Hafr Al Batin, 39524, Kingdom of Saudi Arabia
| | - Muhammad Raashid
- Chemical Engineering Department KSK Campus, University of Engineering and Technology, Punjab, Pakistan
| | - Osama Shaheen Rizvi
- Institute of Environmental Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering, (SBASSE), Lahore University of Management Sciences (LUMS), Sector U, DHA, Lahore Cantt, 54792, Pakistan
| | - Hafiz Abdul Aziz
- Baariq Pharmaceuticals, Sundar Industrial Estate, Lahore, Pakistan
| | | | - Fei Qi
- Beijing Forestry University, Haidian District, No. 35 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Rahat Javaid
- University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
Zhang J, Wu Z, Dong B, Ge S, He S. Effective degradation of quinoline by catalytic ozonation with MnCe xO y catalysts: performance and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:823-837. [PMID: 38358505 PMCID: wst_2024_027 DOI: 10.2166/wst.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCexOy was consciously synthesized by α-MnO2 doped with Ce3+ (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCexOy, investigating free radicals and monitoring the solution pH. Results indicated that the removal rate of quinoline was greatly improved by the prepared MnCexOy catalyst. Specifically, the removal efficiencies of quinoline could be 93.73, 62.57 and 43.76%, corresponding to MnCexOy, α-MnO2 and single ozonation systems, respectively. The radical scavenging tests demonstrated that •OH and •O2- were the dominant reactive oxygen species in the MnCexOy ozonation system. Meanwhile, the contribution levels of •OH and •O2- to quinoline degradation were about 42 and 35%, respectively. The abundant surface hydroxyl groups and oxygen vacancies of the MnCexOy catalyst were two important factors for decomposing molecular O3 into more •OH and •O2-. This study could provide scientific support for the application of the MnCexOy/O3 system in degrading quinoline in bio-treated coking wastewater.
Collapse
Affiliation(s)
- Jie Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China E-mail:
| | - Zhaochang Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Ben Dong
- Jiangsu Fangzheng Environmental Protection Consulting (Group) Co., Ltd, Xuzhou, 221132, Jiangsu, China
| | - Sijie Ge
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
5
|
Peralta-Hernández JM, Brillas E. A critical review over the removal of paracetamol (acetaminophen) from synthetic waters and real wastewaters by direct, hybrid catalytic, and sequential ozonation processes. CHEMOSPHERE 2023; 313:137411. [PMID: 36460148 DOI: 10.1016/j.chemosphere.2022.137411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Paracetamol (PCT) or acetaminophen is a widely prescribed drug to treat fever and mild to moderate pain. The PCT uptake by animals and humans is not complete, being excreted through their urine to contaminate the aquatic/natural environments. Trace amounts of this drug have been found in sewage sludge, hospital wastewaters, wastewater plant treatments, surface waters, and even drinking water. PCT denatures proteins and oxidize lipids in cells with damage of their genetic code. Its toxicity over macrophytes, protozoan, algae, bacteria, and fishes has been reported. Ozonation methods have been proposed as efficient treatments to solve this pollution. This comprehensive and critical review is focused on the application of ozonation processes to remove PCT polluted water from different sources, like natural waters, synthetic waters, and real wastewaters. The fundamentals, operating variables, and best results by direct ozonation and hybrid catalytic ozonation are described, with attention to produced reactive oxygen species and their oxidative action. Single ozonation, catalytic modification of materials, and hybrid non-catalytic processes are detailed as direct ozonation methods. Ozonation with metal-based catalysts and photolytic and photocatalytic ozonation as hybrid catalytic methods are analyzed. Sequential non-biological and biological treatments with ozone and ozonation for wastewater remediation in treatment plants are described. Reaction sequences proposed for PCT mineralization are finally discussed, showing the initial formation of hydroquinone and 2-hydroxy-4-(N-acetyl)-aminophenol and their consecutive evolution to ultimate carboxylic acids like oxalic and oxamic. The ability of the methods to destroy these acids and their iron- and/or copper-complexes explains their mineralization performance.
Collapse
Affiliation(s)
- Juan Manuel Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, Guanajuato, C.P. 36040, Mexico.
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Roh SA, Han SY, Lee DH, Kim KT, Song H. Ozonation of styrene in the flue gas from fiberglass reinforced plastics manufacturing facility: Laboratory and on-site studies. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Heterogeneous Catalytic Ozonation: Solution pH and Initial Concentration of Pollutants as Two Important Factors for the Removal of Micropollutants from Water. SEPARATIONS 2022. [DOI: 10.3390/separations9120413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are several publications on heterogeneous catalytic ozonation; however, their conclusions and the comparisons between them are not always consistent due to the variety of applied experimental conditions and the different solid materials used as catalysts. This review attempts to limit the major influencing factors in order to reach more vigorous conclusions. Particularly, it highlights two specific factors/parameters as the most important for the evaluation and comparison of heterogeneous catalytic ozonation processes, i.e., (1) the pH value of the solution and (2) the initial concentration of the (micro-)pollutants. Based on these, the role of Point of Zero Charge (PZC), which concerns the respective solid materials/catalysts in the decomposition of ozone towards the production of oxidative radicals, is highlighted. The discussed observations indicate that for the pH range 6–8 and when the initial organic pollutants’ concentrations are around 1 mg/L (or even lower, i.e., micropollutant), then heterogeneous catalytic ozonation follows a radical mechanism, whereas the applied solid materials show their highest catalytic activity under their neutral charge. Furthermore, carbons are considered as a rather controversial group of catalysts for this process due to their possible instability under intense ozone oxidizing conditions.
Collapse
|
8
|
Qutob M, Doğan Ş, Rafatullah M. Heterogeneous Activation of Persulfate by Activated Carbon for Efficient Acetaminophen Degradation: Mechanism, Kinetics, Mineralization, and Density Functional Theory. ChemistrySelect 2022. [DOI: 10.1002/slct.202201249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Qutob
- Environmental Technology Division School of Industrial Technology Universiti Sains Penang 11800 Malaysia
| | - Şifa Doğan
- Cyprus International University Faculty of Engineering Department of Environmental Engineering, Nicosia Northern Cyprus, Mersin 10 Turkey
| | - Mohd Rafatullah
- Environmental Technology Division School of Industrial Technology Universiti Sains Penang 11800 Malaysia
- Renewable Biomass Transformation Cluster School of Industrial Technology Universiti Sains Penang 11800 Malaysia
| |
Collapse
|
9
|
Qutob M, Hussein MA, Alamry KA, Rafatullah M. A review on the degradation of acetaminophen by advanced oxidation process: pathway, by-products, biotoxicity, and density functional theory calculation. RSC Adv 2022; 12:18373-18396. [PMID: 35799916 PMCID: PMC9214717 DOI: 10.1039/d2ra02469a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Water scarcity and the accumulation of recalcitrance compounds into the environment are the main reasons behind the attraction of researchers to use advanced oxidation processes (AOPs). Many AOP systems have been used to treat acetaminophen (ACT) from an aqueous medium, which leads to generating different kinetics, mechanisms, and by-products. In this work, state-of-the-art studies on ACT by-products and their biotoxicity, as well as proposed degradation pathways, have been collected, organized, and summarized. In addition, the Fukui function was used for predicting the most reactive sites in the ACT molecule. The most frequently detected by-products in this review were hydroquinone, 1,4-benzoquinone, 4-aminophenol, acetamide, oxalic acid, formic acid, acetic acid, 1,2,4-trihydroxy benzene, and maleic acid. Both the experimental and prediction tests revealed that N-(3,4-dihydroxy phenyl) acetamide was mutagenic. Meanwhile, N-(2,4-dihydroxy phenyl) acetamide and malonic acid were only found to be mutagenic in the prediction test. The findings of the LC50 (96 h) test revealed that benzaldehyde is the most toxic ACT by-products and hydroquinone, N-(3,4-dihydroxyphenyl)formamide, 4-methylbenzene-1,2-diol, benzoquinone, 4-aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4-nitrophenol, and 4-aminobenzene-1,2-diol considered harmful. The release of them into the environment without treatment may threaten the ecosystem. The degradation pathway based on the computational method was matched with the majority of ACT proposed pathways and with the most frequent ACT by-products. This study may contribute to enhance the degradation of ACT by AOP systems.
Collapse
Affiliation(s)
- Mohammad Qutob
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia 11800 Penang Malaysia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
10
|
Application of Attapulgite Clay-Based Fe-Zeolite 5A in UV-Assisted Catalytic Ozonation for the Removal of Ciprofloxacin. J CHEM-NY 2022. [DOI: 10.1155/2022/2846453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the first time, Fe-zeolite 5A (Fe-Z5A) efficacy in the UV-assisted ozonation process to remove ciprofloxacin (CF) in wastewater is investigated. FTIR, SEM, EDX, BET, and the mass transfer process for point of zero charge are used to characterize the catalyst. Furthermore, the synergic process (UV/O3/Fe-Z5A) is compared with O3, O3/UV, and Fe-Z5A/O3 processes. The influence of catalyst dose, hydroxyl radical scavenger, and off-gas ozone released is discussed. The removal efficiency of CF in wastewater (for the synergic process) is compared with a single ozonation process. The results indicate that the synergic process was more efficient than others, with about 73% CF being removed (in 60 minutes) in the synergic process. The results also show that synergic processes produce less off-gas ozone than other processes, suggesting more ozone consumption in the synergic process, and confirmed by the radical scavenger effect and hydrogen peroxide decomposition studies. The Fe-Z5A was found to operate through a hydroxyl mechanism in which Fe worked as an active site that promotes the formation of hydroxyl radicals. Finally, the synergic process was more efficient than the ozonation process in the wastewater matrix. Hence, Fe-Z5A/O3/UV pathway is highly efficient for the degradation of pharmaceuticals in wastewater.
Collapse
|
11
|
Wang C, Zhang J, Du J, Zhang P, Zhao Z, Shi W, Cui F. Rapid degradation of norfloxacin by VUV/Fe 2+/H 2O 2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125893. [PMID: 34492831 DOI: 10.1016/j.jhazmat.2021.125893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
Vacuum UV (VUV) technology has attracted much attention because it effectively splits water to generate reactive oxygen species (ROS) in situ and has the advantages of UV. So far, the synergistic mechanisms, formation pathways and contributions of ROS in VUV/Fe2+/H2O2 process have not been extensively studied. Herein, complete removal (at 4 min) and 63.3% mineralization (at 8 min) of 45 μM norfloxacin (NOR) were achieved at neutral pH by VUV/Fe2+/H2O2 (90 μM Fe2+ and 3 mM H2O2). Compared with its subsystems, VUV/Fe2+/H2O2 can not only increase the pseudo-first-order reaction rate constant of NOR removal by 2.3-14.9 times and increase the mineralization by 20.4-59.4%, but also reduce the residual ratio of H2O2 by 19.9-70.1% and reduce total cost by 20.0-68.0%. The synergy factor of VUV/Fe2+/H2O2 was 3.97, which was attributed to the VUV irradiation promoting iron redox cycle and H2O2 decomposition. Moreover, hydroxyl radical and superoxide radical, which were identified as the main ROS, contributed 79.07% and 18.47% to NOR removal, respectively. Degradation pathways of NOR were proposed. Furthermore, effects of coexisting ions and dissolved organic matter were investigated. As an energy-saving and efficient process, the satisfactory results of VUV/Fe2+/H2O2 applied in real waters also highlight its application potential.
Collapse
Affiliation(s)
- Chuang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Jing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jinying Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengfei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| | - Wenxin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
12
|
Combined Iron-Loaded Zeolites and Ozone-Based Process for the Purification of Drinking Water in a Novel Hybrid Reactor: Removal of Faecal Coliforms and Arsenic. Catalysts 2021. [DOI: 10.3390/catal11030373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study was carried out to provide a novel solution to treat drinking water at household levels, specifically removing arsenic (As) and faecal coliforms (microbes). In the current investigation, a synergistic iron-loaded zeolites and ozonation process (O3/Fe-ZA) was used for the first time in a modified batch reactor to remove coliform bacteria and arsenic in tap water. Moreover, the study utilizes the human health risk assessment model to confirm the health risk due to As intake in drinking water. The risk assessment study revealed a health risk threat among the residents suffering from the adverse effects of As through its intake in drinking water. Furthermore, the results also suggested that the O3/Fe-ZA process significantly removes faecal coliforms and As, when compared with single ozonation processes. Additionally, the ozone dose 0.2 mg/min and Fe-ZA dose of 10 g (in the O3/Fe-ZA process) gives the maximum removal efficiency of 100% within 15 min for faecal coliform removal. In 30 min, the removal efficiency of 88.4% was achieved at the ozone dose of 0.5 mg/min and 93% removal efficiency was achieved using 10 g Fe-ZA for the removal of As in the O3/Fe-ZA process. Hence, it was concluded that the O3/Fe-ZA process may be regarded as an effective method for removing faecal coliforms and As from drinking water compared to the single ozonation processes.
Collapse
|
13
|
Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts 2020. [DOI: 10.3390/catal10121485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to summarize the results obtained in a wide research project carried out for more than 15 years on the catalytic activity of different catalysts (activated carbon, metal–carbon xerogels/aerogels, iron-doped silica xerogels, ruthenium metal complexes, reduced graphene oxide-metal oxide composites, and zeolites) in the photooxidation (by using UV or solar radiation) and ozonation of water pollutants, including herbicides, naphthalenesulfonic acids, sodium para-chlorobenzoate, nitroimidazoles, tetracyclines, parabens, sulfamethazine, sodium diatrizoate, cytarabine, and surfactants. All catalysts were synthesized and then texturally, chemically, and electronically characterized using numerous experimental techniques, including N2 and CO2 adsorption, mercury porosimetry, thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV–vis spectroscopy, photoluminescence analysis, and transmission electron microscopy. The behavior of these materials as photocatalysts and ozonation catalysts was related to their characteristics, and the catalytic mechanisms in these advanced oxidation processes were explored. Investigations were conducted into the effects on pollutant degradation, total organic carbon reduction, and water toxicity of operational variables and the presence of different chemical species in ultrapure, surface, ground, and wastewaters. Finally, a review is provided of the most recent and relevant published studies on photocatalysis and catalyzed ozonation in water treatments using similar catalysts to those examined in our project.
Collapse
|
14
|
Ikhlaq A, Javed F, Akram A, Qazi UY, Masood Z, Ahmed T, Arshad Z, Khalid S, Qi F. Treatment of leachate through constructed wetlands using Typha angustifolia in combination with catalytic ozonation on Fe-zeolite A. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:809-817. [PMID: 33307731 DOI: 10.1080/15226514.2020.1858753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Leachate control and management is a major challenge faced during solid waste management as it may pollute surface and groundwaters. In the current research, constructed wetlands (CWs) vegetated with Typha angustifolia plant in combination with catalytic ozonation by ferrous (Fe)-coated zeolite A was studied for the treatment of leachate. The CWs treatment with 9 days detention reduced the chemical oxygen demand (COD) and biochemical oxygen demand (BOD) up to 75.81% and 69.84%, respectively. Moreover, total suspended solids (TSS), total dissolved solids (TDS), and total kjeldahl nitrogen (TKN) removal of 91.16%, 33.33%, and 25.22% were achieved, respectively. The Fe-coated zeolite A catalytic ozonation further reduced the COD up to 90.7%. Comparison of the processes showed the effective performance of the combined process (CW/O3/Fe-zeolite) with 97.76% COD reduction of leachate. It is, therefore, concluded that the studied combined process (CW/O3/Fe-zeolite A) was more efficient as compared with single ozonation and CW alone, hence it can be implied for the leachate treatment in real conditions.
Collapse
Affiliation(s)
- Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Farhan Javed
- Department of Chemical and Polymer Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Asia Akram
- Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Zafar Masood
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Tanveer Ahmed
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Zainab Arshad
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Sajeela Khalid
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Fei Qi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
15
|
Wang Y, Duan X, Xie Y, Sun H, Wang S. Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04232] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yongbing Xie
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
16
|
Catalytic Ozonation and Membrane Contactors—A Review Concerning Fouling Occurrence and Pollutant Removal. WATER 2020. [DOI: 10.3390/w12112964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Membrane filtration has been widely used in water and wastewater treatment. However, this process is not very effective for the removal of refractory organic compounds (e.g., of pharmaceutical origin). Coupling membrane filtration with ozonation (or other Advanced Oxidation Methods) can enhance the degradation of these compounds and, subsequently, the incidence of membrane fouling (i.e., the major problem of membrane uses) would be also limited. Ozonation is an efficient oxidative process, although ozone is considered to be a rather selective oxidant agent and sometimes it presents quite low mineralization rates. An improvement of this advanced oxidation process is catalytic ozonation, which can decrease the by-product formation via the acceleration of hydroxyl radicals production. The hydroxyl radicals are unselective oxidative species, presenting high reaction constants with organic compounds. An efficient way to couple membrane filtration with catalytic ozonation is the deposition of an appropriate solid catalyst onto the membrane surface. However, it must be noted that only metal oxides have been used as catalysts in this process, while the membrane material can be of either polymeric or ceramic origin. The relevant studies regarding the application of polymeric membranes are rather scarce, because only a few polymeric materials can be ozone-resistant and the deposition of metal oxides on their surface presents several difficulties (e.g., affinity etc.). The respective literature about catalytic membrane ozonation is quite limited; however, some studies have been performed concerning membrane fouling and the degradation of micropollutants, which will be presented in this review. From the relevant results it seems that this hybrid process can be an efficient technology both for the reduction of fouling occurrence as well as of enhancement of micropollutant removal, when compared to the application of single filtration or ozonation.
Collapse
|
17
|
Tong X, Li Z, Chen W, Wang J, Li X, Mu J, Tang Y, Li L. Efficient catalytic ozonation of diclofenac by three-dimensional iron (Fe)-doped SBA-16 mesoporous structures. J Colloid Interface Sci 2020; 578:461-470. [PMID: 32535428 DOI: 10.1016/j.jcis.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022]
Abstract
The removal of diclofenac (DCF) that causes risks to the environment and human health remains a great challenge due to the inefficiency of conventional physical methods. In this work, an efficient catalytic ozonation of DCF is achieved from a novel iron-doped SBA-16 (Fe-SBA-16) three-dimensional (3D) mesoporous structure. The Fe-SBA-16/ozonation (O3) system exhibits enhanced catalytic activity towards DCF mineralization (up to 79.3% in 1.5 h), which is 1.2 times of its counterpart, Fe-MCM-41, and 2.4 times of the sole ozonation without catalysts. The unique 3D mesoporous structures accelerate the mass transfer and meanwhile result in higher ozone utilization efficiency for more effective generation of active species, hence enhancing the DCF mineralization efficiency. We believe the well-defined Fe-SBA-16 catalyst coupled with their enhanced catalytic ozonation performances will provide new insights into the construction of mesoporous structured materials to eliminate hazards in aqueous solutions for the environment remediation.
Collapse
Affiliation(s)
- Xinyuan Tong
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhidong Li
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Weirui Chen
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou 510006, China.
| | - Xukai Li
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou 510006, China
| | - Jiaxin Mu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yiming Tang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou 510006, China.
| |
Collapse
|
18
|
Yuan Y, Xing G, Garg S, Ma J, Kong X, Dai P, Waite TD. Mechanistic insights into the catalytic ozonation process using iron oxide-impregnated activated carbon. WATER RESEARCH 2020; 177:115785. [PMID: 32304906 DOI: 10.1016/j.watres.2020.115785] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, radiolabelled formate was used as a probe compound in order to gain mechanistic insight into the catalytic ozonation process using a commercially available iron oxide-impregnated activated carbon catalyst. We simultaneously analysed the adsorptive and oxidative removal of formate in order to determine the contribution of the catalyst to adsorption and oxidant generation processes respectively. Our results show that the presence of the catalyst enhanced ozone decay as well as the rate and extent of formate oxidation at pH 3.0 compared to that observed in the presence of ozone alone as a result of oxidant generation via O3-Fe oxide interaction. A reduction in rate and extent of formate oxidation on addition of t-butanol and Cl- (known hydroxyl radical (•OH) scavengers under acidic conditions) provides evidence that the oxidant generated during catalytic ozonation at pH 3.0 is •OH. Moreover, the oxidation of formate during catalytic ozonation mostly occurs at the solid-liquid interface and/or in bulk solution with adsorption playing no role in the overall oxidation process with this finding supported by the exceptionally high oxidation efficiency compared to the extent of adsorption observed when no O3 was added. While catalytic ozonation was effective in formate oxidation at pH 3.0, the presence of the catalyst did not lead to an increase in either the rate or extent of formate oxidation at pH 7.3 and 8.5 suggesting that only protonated iron oxide surface sites generate strong oxidant(s) on interaction with O3. Based on our understanding of the processes operating during the ozonation and catalytic ozonation processes, a mathematical model has been developed that adequately describes the experimental results obtained here. Overall, this study shows that systematic measurement of ozone decay, removal of the parent compound as well as formation of the oxidized products under well controlled conditions are required for unequivocal elucidation of the mechanism of catalytic ozonation.
Collapse
Affiliation(s)
- Yuting Yuan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Guowei Xing
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Xiangtong Kong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Pan Dai
- Beijing OriginWater Technology Co., Ltd, Beijing, China.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Yu G, Wang Y, Cao H, Zhao H, Xie Y. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5931-5946. [PMID: 32324393 DOI: 10.1021/acs.est.0c00575] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) processes have been widely studied for water purification. The reaction mechanisms of these processes are very complicated because of the simultaneous involvement of gas, solid, and liquid phases. Although typical reaction mechanisms have been established for HCO, some of them are only appropriate for specific systems. The divergence and deficiency in mechanisms hinders the development of novel active catalysts. This critical review compares the various existing mechanisms and categorizes the catalytic oxidation of HCO into radical-based oxidation and nonradical oxidation processes with an in-depth discussion. The catalytic active sites and adsorption behaviors of O3 molecules on the catalyst surface are regarded as the key clues for further elucidating the O3 activation processes, evolution of reactive oxygen species (ROS) or organic oxidation pathways. Moreover, the detection methods of the ROS produced in both types of oxidations and their roles in the destruction of organics are reviewed with discussion of some specific problems among them, including the scavengers selection, experiment results analysis as well as some questionable conclusions. Finally, alternative strategies for the systematic investigation of the HCO mechanism and the prospects for future studies are envisaged.
Collapse
Affiliation(s)
- Guangfei Yu
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum- Beijing, Beijing 102249, China
| | - Hongbin Cao
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- CAS Key Laboratory of Green Process & Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Lee WJ, Goh PS, Lau WJ, Ismail AF. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135249. [PMID: 31837842 DOI: 10.1016/j.scitotenv.2019.135249] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Ozonation process has been widely applied in water and wastewater treatment, such as for disinfection, for degradation of toxic organic pollutants. However, the utilization efficiency of ozone is low and the mineralization of organic pollutants by ozone oxidation is ineffective, and some toxic disinfection byproducts (DBPs) may be formed during ozonation process. Catalytic ozonation process can overcome these problems to some extent, which has received increasing attention in recent years. During catalytic ozonation, catalysts can promote O3 decomposition and generate active free radicals, which can enhance the degradation and mineralization of organic pollutants. In this paper, the history of ozonation application in water treatment was briefly reviewed. The properties of the ozone molecule, the ozonation types and several ozone-based water treatment processes were briefly introduced. Various catalysts for catalytic ozonation, including homogeneous and heterogeneous catalysts, such as metal ions, metal oxidizes, carbon-based materials and their possible catalytic mechanisms were analyzed and summarized in detail. Furthermore, some inconsistent results of previous research on catalytic ozonation were analyzed and discussed. The application of catalytic oxidation for the degradation of toxic organic pollutants, including phenols, pesticides, dyes, pharmaceuticals and others, was summarized. Finally, several key aspects of catalytic ozonation, such as pH effect, the catalyst performance, the catalytic mechanism were proposed, to which more attention should be paid in future study.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| | - Hai Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Wang Y, Xi J, Duan X, Lv W, Cao H, Chen C, Guo Z, Xie Y, Wang S. The duet of surface and radical-based carbocatalysis for oxidative destructions of aqueous contaminants over built-in nanotubes of graphite. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121486. [PMID: 31668756 DOI: 10.1016/j.jhazmat.2019.121486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Metal-free mesoporous graphitic frameworks with built-in nanotubes (CPGs) were synthesized via facile co-pyrolysis of cyclodextrin and a cobalt salt with subsequent acid pickling to remove the embedded metal species. Due to the high graphitic degree and built-in few-layer nanotubes, the as-synthesized carbonaceous materials possess a higher catalytic ozonation activity than that of the state-of-the-art carbon nanotubes (CNTs) and LaMnO3 perovskite catalysts for the destruction of different aqueous contaminants. For recalcitrant oxalic acid removal, 50 mg L-1 oxalic acid was completely degraded in 20 min. Compared with other nanocarbons, the as-synthesized materials also demonstrated robust structural stability and reusability. The electron paramagnetic resonance (EPR) and selective radical quenching tests revealed that the destruction of the aqueous organics predominantly relied on surface-adsorbed complexes (O*ad and O2*) from activated ozone molecules. Owing to the occurrence of this surface oxidation pathway, the compatibility of the CPGs/O3 system was significantly enhanced for treatment of real wastewater, where the inorganic anions and organic natural organic matter would inhibit radical oxidation as radical scavengers. Furthermore, by employing organics with different ionization potentials (IPs) as the target pollutants, the CPGs/O3 system was discovered to obtain a high oxidation potential.
Collapse
Affiliation(s)
- Yuxian Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 18 Fuxue Road, Beijing, 102249, China
| | - Jiaxin Xi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 18 Fuxue Road, Beijing, 102249, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Weiguang Lv
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbin Cao
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 18 Fuxue Road, Beijing, 102249, China.
| | - Zhuang Guo
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- Division of Environment Technology and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Hu J, Li Y, Nan S, Yoza BA, Li Y, Zhan Y, Wang Q, Li QX, Guo S, Chen C. Catalytic Ozonation of Nitrobenzene by Manganese-Based Y Zeolites. Front Chem 2020; 8:80. [PMID: 32117897 PMCID: PMC7028746 DOI: 10.3389/fchem.2020.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic ozonation process (COP) is considered as a cost-efficient technology for the treatment of refractory chemical wastewaters. The catalyst performance plays an important role for the treatment efficiency. The present study investigated efficiencies and mechanisms of manganese (Mn)-based Y zeolites in COPs for removing nitrobenzene from water. The catalysts of Mn/NaY and Mn/USY were prepared by incipient wetness impregnation, while Mn-USY was obtained by hydrothermal synthesis. Mn-USY contained a greater ratio of Mn2+ than Mn/NaY, and Mn/USY. Mn oxides loaded on Y zeolites promoted the COP efficiencies. Mn/NaY increased total organic carbon removal in COP by 7.3% compared to NaY, while Mn/USY and Mn-USY increased 11.5 and 15.8%, respectively, relative to USY in COP. Multivalent Mn oxides (Mn2+, Mn3+, and Mn4+) were highly dispersed on the surface of NaY or USY, and function as catalytic active sites, increasing mineralization. Mn-USY showed the highest total organic carbon removal (44.3%) in COP among the three catalysts, because Mn-USY had a higher ratio of Mn2+ to the total Mn oxides on the surface than Mn/NaY and Mn/USY and the catalytic effects from intercorrelations between Mn oxides and mesoporous surface structures. The hydroxyl radicals and superoxide radicals governed oxidations in COP using Mn-USY. Nitrobenzene was oxidized to polyhydroxy phenol, polyhydroxy nitrophenol, and p-benzoquinone. The intermediates were then oxidized to small organic acids and ultimately carbon dioxide and water. This study demonstrates the potential of Y zeolites used in COP for the treatment of refractory chemical wastewaters.
Collapse
Affiliation(s)
- Jingze Hu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Yiming Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Shaoshuai Nan
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yifan Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Yali Zhan
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Qinghong Wang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Shaohui Guo
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| | - Chunmao Chen
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing, China
| |
Collapse
|
24
|
Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts 2020. [DOI: 10.3390/catal10010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbamazepine (CBZ), a widely used pharmaceutical compound, is one of the most detected drugs in surface waters. The purpose of this work was to identify an active and durable catalyst, which, in combination with an ozonation process, could be used to remove CBZ and its degradation products. It was found that the CBZ was completely transformed after ozonation within the first minutes of the treatment. However, the resulting degradation products, 1-(2-benzaldehyde)-4-hydro-(1H,3H)-quinazoline-2-one (BQM) and 1-(2-benzaldehyde)-(1H,3H)-quinazoline-2,4-dione (BQD), were more resistant during the ozonation process. The formation and degradation of these products were studied in more detail and a thorough catalytic screening was conducted to reveal the reaction kinetics of both the CBZ and its degradation products. The work was performed by non-catalytic ozonation and with six different heterogeneous catalysts (Pt-MCM-41-IS, Ru-MCM-41-IS, Pd-H-Y-12-EIM, Pt-H-Y-12-EIM, Pd-H-Beta-300-EIM and Cu-MCM-41-A-EIM) operating at two temperatures 20 °C and 50 °C. The influence of temperature on degradation kinetics of CBZ, BQM and BQD was studied. The results exhibited a notable difference in the catalytic behavior by varying temperature. The higher reactor temperature (50 °C) showed a higher activity of the catalysts but a lower concentration of dissolved ozone. Most of the catalysts exhibited higher removal rate for BQM and BQD compared to non-catalytic experiments in both temperatures. The Pd-H-Y-12-EIM catalyst illustrated a higher degradation rate of by-products at 50 °C compared to other catalysts.
Collapse
|
25
|
Sun Z, Zhao L, Liu C, Zhen Y, Ma J. Catalytic Ozonation of Ketoprofen with In Situ N-Doped Carbon: A Novel Synergetic Mechanism of Hydroxyl Radical Oxidation and an Intra-Electron-Transfer Nonradical Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10342-10351. [PMID: 31392886 DOI: 10.1021/acs.est.9b02745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel synergetic mechanism of hydroxyl radical (•OH) oxidation and an intra-electron-transfer nonradical reaction was found in the catalytic ozonation of ketoprofen (KTP) with the in situ N-doped hollow sphere carbon (NHC). Outperforming the conventional •OH-based catalytic ozonation process, O3/NHC not only realized an enhancement of the pseudo-first-order rate constant of 11 times in comparison with that of O3 alone, but was also endowed with a high stability over a wide pH (4-9) and temperature (15-35 °C) range for the degradation of KTP. The high graphitization degree (ID/IG = 0.78-0.88) and low unsaturated oxygen content (0.10-1.38%) of NHC highlighted the dominant role of N-heteroatoms in the O3/NHC system. The specific effects of different N species were confirmed by a relationship study (N property vs catalytic activity) and X-ray photoelectron spectroscopy characterization. The graphitic N forming in the bulk of the graphitic structure served as the "electron-mobility" region to promote KTP degradation with the transfer of electrons from the KTP molecule to O3 via a nonradical reaction process. The pyrrolic and pyridinic N located at defects of the graphitic structure acted as the "radical-generation" region to decompose O3 into •OH for degrading KTP by a radical oxidation process. This finding provided a brand new insight into engineering N-doped carbonaceous catalysts precisely in the catalytic ozonation process for the efficient treatment of organic-contaminated water.
Collapse
Affiliation(s)
| | | | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Urban Construction and Environmental Engineering , Chongqing University , Chongqing 400044 , People's Republic of China
| | | | | |
Collapse
|
26
|
Xu Y, Wang Q, Yoza BA, Li QX, Kou Y, Tang Y, Ye H, Li Y, Chen C. Catalytic Ozonation of Recalcitrant Organic Chemicals in Water Using Vanadium Oxides Loaded ZSM-5 Zeolites. Front Chem 2019; 7:384. [PMID: 31214567 PMCID: PMC6554291 DOI: 10.3389/fchem.2019.00384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022] Open
Abstract
The discharge of wastewater having recalcitrant chemical compositions can have significant and adverse environmental effects. The present study investigates the application of a catalytic ozonation treatment for the removal of recalcitrant organic chemicals (ROCs) from the water. Novel catalytic materials using vanadium (V) oxides deposited onto the surface of NaZSM-5 zeolites (V/ZSM) were found to be highly efficient for this purpose. The highly-dispersed V oxides (V4+ and V5+) and Si-OH-Al framework structures were determined to promote the surface reaction and generation of hydroxyl radicals. The constructed V1/ZSM450 (0.7 wt% of V loading and 450°C of calcination) exhibited the highest activity among the developed catalyst compositions. The V1/ZSM450-COP increased the mineralization rate of nitrobenzene and benzoic acid by 50 and 41% in comparison to single ozonation. This study demonstrates the enhanced potential of V/ZSM catalysts used with catalytic ozonation process (COP) for the treatment of chemical wastewaters.
Collapse
Affiliation(s)
- Yingying Xu
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Brandon A. Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yue Kou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Yuqi Tang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Huangfan Ye
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Yiming Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China
| |
Collapse
|
27
|
Abstract
Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.
Collapse
|