1
|
Liu J, Zhang B, Jian P, Shi J. Experimental and Theoretical Investigation of Interfacial Engineering in Fe 2O 3/NiFe 2O 4 Heterostructures toward the Cycloaddition of CO 2 with Styrene Oxide. Inorg Chem 2024; 63:12981-12991. [PMID: 38951131 DOI: 10.1021/acs.inorgchem.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The chemical fixation of CO2 into epoxides for the synthesis of cyclic carbonates is an appealing solution to both reduce global CO2 emission and produce fine chemicals, but it is still a prime challenge to develop a low-cost, earth-abundant, yet efficient solid catalyst. Herein, Fe2O3/NiFe2O4 heterostructures are facilely constructed for the highly efficient cycloaddition of CO2 with styrene oxide (SO) to produce styrene carbonate (SC). Both experimental findings and density functional theory (DFT) calculations substantiate the prominent electron transfer and charge redistribution within the heterointerfaces between the biphasic components, which induce a unique interfacial microenvironment that can facilitate the adsorption and activation of SO. This endows the biphasic catalyst with a substantially higher reactivity than the individual components. This study sheds new insights into the establishment of heterostructured catalysts consisting of transitional metal oxides for the high-efficiency production of SC from the cycloaddition of CO2 with SO.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Shi
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
2
|
Liu Y, Li S, Chen Y, Hu T, Pudukudy M, Shi L, Shan S, Zhi Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO 2 cycloaddition. J Colloid Interface Sci 2023; 652:737-748. [PMID: 37500314 DOI: 10.1016/j.jcis.2023.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Ying Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Sichuan Vocational College of Chemical Technology, Luzhou, Sichuan 646300, PR China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Manoj Pudukudy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
3
|
Song F, Cen S, Wan C, Wang L. Nano‐Au anchored in organic base group‐grafted silica aerogel: A durable and robust catalysts for green oxidative esterification of furfural. ChemCatChem 2022. [DOI: 10.1002/cctc.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fan Song
- Shaoxing University School of Chemistry and Chemical Engineering CHINA
| | - Shuangshuang Cen
- Shaoxing University School of Chemistry and Chemical Engineering CHINA
| | - Cong Wan
- Shaoxing University School of Chemistry and Chemical Engineering CHINA
| | - Lijun Wang
- Shaoxing University School of Chemistry and Chemical Engineering 508#, Huanchengxi Road, Fushan street, Yuecheng district, Shaoxing city, Zhejian 312000 Shaoxing CHINA
| |
Collapse
|
4
|
Khumho R, Tocuweang K, Sangkhum P, Kuchonthara P, Ashokkumar V, Ngamcharussrivichai C. Etherification of glycerol into short-chain polyglycerols over MgAl LDH/CaCO 3 nanocomposites as heterogeneous catalysts to promote circular bioeconomy. CHEMOSPHERE 2022; 291:133091. [PMID: 34848223 DOI: 10.1016/j.chemosphere.2021.133091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Glycerol is a byproduct from biodiesel production via conventional transesterification processes, representing approximately 10 wt% of the mass of biodiesel produced. Because of increasing biodiesel consumption, the volume of glycerol being produced has grown significantly, leading to a large surplus and, consequently, a dramatic drop in its market value. Thus, the valorization of glycerol into chemicals is a promising pathway toward sustainability in biodiesel industries. This study focused on upgrading biodiesel plant-derived glycerol into short-chain polyglycerols (PG), which are used as intermediates for producing emulsifiers in several consumer products, via catalytic etherification. To enhance environmental sustainability, solvent-free etherification of glycerol was performed over mixed oxides derived from magnesium-aluminum layered double hydroxides (MgAl LDH). For the first time, natural dolomite, a mixed calcium and magnesium carbonate (CaMg [CO3]2), was used as an Mg source in the preparation of MgAl LDH/CaCO3 nanocomposites via hydrothermal synthesis. The calcined MgAl LDH/CaCO3 nanocomposites were characterized by highly dispersed small crystallites of magnesium oxide. Their textural and acid-base properties were tuned by varying the Mg:Al molar ratio. The MgAl LDH/CaCO3 (an Mg:Al molar ratio of 1:1) calcined at 500 °C exhibited a superior catalytic performance to the MgAl LDH available commercially and the one synthesized by conventional co-precipitation. The nanocomposite catalyst displayed selectivity of >99% toward short-chain PG at 52.1 mol% glycerol conversion.
Collapse
Affiliation(s)
- Rujeeluk Khumho
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Kitvara Tocuweang
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Prissana Sangkhum
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Prapan Kuchonthara
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Veeramuthu Ashokkumar
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Chawalit Ngamcharussrivichai
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Balas M, K/Bidi L, Launay F, Villanneau R. Chromium-Salophen as a Soluble or Silica-Supported Co-Catalyst for the Fixation of CO 2 Onto Styrene Oxide at Low Temperatures. Front Chem 2021; 9:765108. [PMID: 34778214 PMCID: PMC8588859 DOI: 10.3389/fchem.2021.765108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Addition of a soluble or a supported CrIII-salophen complex as a co-catalyst greatly enhances the catalytic activity of Bu4NBr for the formation of styrene carbonate from styrene epoxide and CO2. Their combination with a very low co-catalyst:Bu4NBr:styrene oxide molar ratio = 1:2:112 (corresponding to 0.9 mol% of CrIII co-catalyst) led to an almost complete conversion of styrene oxide after 7 h at 80°C under an initial pressure of CO2 of 11 bar and to a selectivity in styrene carbonate of 100%. The covalent heterogenization of the complex was achieved through the formation of an amide bond with a functionalized {NH2}-SBA-15 silica support. In both conditions, the use of these CrIII catalysts allowed excellent conversion of styrene already at 50°C (69 and 47% after 24 h, respectively, in homogeneous and heterogeneous conditions). Comparison with our previous work using other metal cations from the transition metals particularly highlights the preponderant effect of the nature of the metal cation as a co-catalyst in this reaction, that may be linked to its calculated binding energy to the epoxides. Both co-catalysts were successfully reused four times without any appreciable loss of performance.
Collapse
Affiliation(s)
- Matthieu Balas
- CNRS UMR 7197, Laboratoire de Réactivité de Surface, LRS, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, IPCM, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Ludivine K/Bidi
- CNRS UMR 7197, Laboratoire de Réactivité de Surface, LRS, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
- CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, IPCM, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Franck Launay
- CNRS UMR 7197, Laboratoire de Réactivité de Surface, LRS, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Richard Villanneau
- CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, IPCM, Campus Pierre et Marie Curie, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Zhou B, Song F, Ma X, Wang L. Batch and Continuous-Flow Preparation of Biomass-Derived Furfural Acetals over a TiO 2 Nanoparticle-Exfoliated Montmorillonite Composite Catalyst. CHEMSUSCHEM 2021; 14:2341-2351. [PMID: 33831278 DOI: 10.1002/cssc.202100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Furfural acetals with high octane value, high calorific value and high oxidation resistance are considered promising biofuels or fuel precursors with huge potential demand. However, there are few studies on efficient scalable catalyst systems, including continuous-flow catalyst systems, for their preparation. In this work, TiO2 nanoparticles supported on exfoliated montmorillonite, with strong Lewis acid sites and abundant accessible Brønsted acid sites, is used to catalyze the acetalization reactions of biomass-derived furfural and alcohols. Low dosage of the catalyst made the reaction reach equilibrium in a very short time (TOF=690-1305 min-1 ) at room temperature with the acetal as the only product. In continuous-flow reactions, the catalyst showed a stable product output with conversion close to that for the batch reaction with a short catalyst-reactant contact time of 150 s. Contrast experiments revealed that both Lewis and Brønsted acid sites on the catalyst were indispensable for maximizing the catalytic performance, and simultaneously activating both furfural and alcohol on the adjacent Lewis and Brønsted acid sites was proposed to be responsible for the high catalytic performance.
Collapse
Affiliation(s)
- Bo Zhou
- School of Chemistry and Chemical Engineering, Shaoxing University, Huanchengxi Road 508, Shaoxing, 312000, P. R. China
- School of Civil Engineering, Shaoxing University, Huanchengxi Road 508, Shaoxing, 312000, P. R. China
| | - Fan Song
- School of Chemistry and Chemical Engineering, Shaoxing University, Huanchengxi Road 508, Shaoxing, 312000, P. R. China
| | - Xinyue Ma
- School of Chemistry and Chemical Engineering, Shaoxing University, Huanchengxi Road 508, Shaoxing, 312000, P. R. China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Shaoxing University, Huanchengxi Road 508, Shaoxing, 312000, P. R. China
| |
Collapse
|