1
|
Majnis MF, Mohd Adnan MA, Yeap SP, Muhd Julkapli N. How can heteroatoms boost the performance of photoactive nanomaterials for wastewater purification? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121808. [PMID: 39025012 DOI: 10.1016/j.jenvman.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Photocatalysis, as an alternative for treating persistent water pollutants, holds immense promise. However, limitations hinder sustained treatment and recycling under varying light conditions. This comprehensive review delves into the novel paradigm of metal and non-metal doping to overcome these challenges. It begins by discussing the fundamental principles of photocatalysis and its inherent limitations. Understanding these constraints is crucial for developing effective strategies. Band gap narrowing by metal and non-metal doping modifies the band gap, enabling visible-light absorption. Impurity energy levels and oxygen vacancies influenced the doping energy levels and surface defects. Interfacial electron transfer and charge carrier recombination are the most important factors that impact overall efficiency. The comparative analysis of nanomaterials are reviewed on various, including nanometal oxides, nanocarbon materials, and advanced two-dimensional structures. The synthesis process are narratively presented, emphasizing production yields, selectivity, and efficiency. The review has potential applications in the environment for efficient pollutant removal and water purification, economic cost-effective and scalable production and technological advancement catalyst design, in spite of its challenges in material stability, synthesis methods and optimizing band gaps. The novelty of the review paper is on the proposal of a new paradigm of heterojunctions of doped metal and non-metal photocatalysts to promise highly efficient water treatment. This review bridges the gap between fundamental research and practical applications, offering insights into tailored nano photocatalysts.
Collapse
Affiliation(s)
- Mohd Fadhil Majnis
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Azam Mohd Adnan
- Advanced Materials Research Group (AMRG) Department of Engineering, Faculty of Engineering & Life Sciences, Universiti Selangor, Bestari Jaya Campus, Jalan Timur Tambahan, 45600, Bestari Jaya, Selangor, Malaysia
| | - Swee Pin Yeap
- Department of Chemical Engineering UCSI University. UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology and Catalysis Research Center (NANOCAT) Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Xin J, Pang H, Gómez-García CJ, Jin Z, Wang Y, Au CM, Ma H, Wang X, Yang G, Yu WY. Nitrogen doped 1 T/2H mixed phase MoS 2/CuS heterostructure nanosheets for enhanced peroxidase activity. J Colloid Interface Sci 2024; 659:312-319. [PMID: 38176240 DOI: 10.1016/j.jcis.2023.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot, Spain
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Ying Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Lei Y, Wang J, Jiang B, Liu H, Lan H, Zhang Y, Gao G. Enhanced photo-Fenton degradation of contaminants in a wide pH range via synergistic interaction between 1T and 2H MoS 2 and copolymer tea polyphenols/polypyrrole. J Colloid Interface Sci 2024; 658:74-89. [PMID: 38100978 DOI: 10.1016/j.jcis.2023.11.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In this study, we present the successful development of a unique photo-Fenton catalyst, 1T-2H MoS2@TP/PPy (MTP), achieved through the coating of a copolymer of tea polyphenol (TP) and polypyrrole (PPy) onto the surface of heterophase molybdenum disulfide (1T-2H MoS2). This innovative approach involves the integration of hydrothermal synthesis with copolymerization techniques. Our strategy utilizes nanoflower-like 1T-2H MoS2 as the foundational framework, which is then enveloped in TP and PPy copolymer. This innovative approach involves the integration of hydrothermal synthesis with copolymerization techniques. Our strategy utilizes nanoflower-like 1T-2H MoS2 as the foundational framework, which is then enveloped in TP and PPy copolymer. This distinctive architecture demonstrates exceptional catalytic performance owing to the hetero-phase entanglement of 1T-2H MoS2, which provides a diverse array of active sites. The coupled structure of TP and iron (TP-Fe2+/Fe3+) effectively overcome the limitation associated with the iron source. The incorporation of PPy not only reduces the recombination of photogenerated electron-hole pairs but also enhances the stability of 1T-2H MoS2. Remarkably, our experiments on the degradation of methylene blue (MB) and tetracycline (TC) degradation demonstrate that TP-Fe2+/Fe3+ significantly expands the pH applicability range of the MTP composite catalyst. Additionally, we examine several factors, including different catalysts, H2O2 addition, variations in light intensity, solution pH, temperature fluctuations, and the role of active species, to comprehensively understand their impact on the photo-Fenton degradation process. In conclusion, MTP composite exhibits robust catalytic stability and demonstrates a broad pH utilization range in the photo-Fenton oxidation process, highlighting its promising potential for a wide range of applications.
Collapse
Affiliation(s)
- Yanhua Lei
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China.
| | - Jie Wang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Bochen Jiang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China; School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226000, China
| | - Hui Liu
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Haifeng Lan
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yuliang Zhang
- Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Guanhui Gao
- Material Science and Nano Engineering Department, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
4
|
Mo-doped CoFeP/nitrogen doped carbon porous nanocubes for alkaline hydrogen production. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|