1
|
Wang C, Wang X, Ge Y, Xu Y, Hao L, Tan J, Li R, Wen M, Wang Y. Decelerating catalyst aging of natural gas engines using organic Rankine cycle under road conditions. Heliyon 2024; 10:e33067. [PMID: 38994049 PMCID: PMC11238045 DOI: 10.1016/j.heliyon.2024.e33067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
High exhaust temperature is an intrinsic nature of natural gas engines which underlies power de-rating and thermal aging of after-treatment system; therefore, this study integrates an organic Rankine cycle (ORC) system between engine and it's three-way catalyst (TWC) to address these challenges. ORC facilitates power output enhancement through exhaust energy recovery and alleviates thermal aging by reducing exhaust temperature. To estimate the effectiveness of this hypothesized system, a simulation-based investigation is performed. First, simulation models, including engine, TWC, and vehicle dynamic models, are built and validated by experimental data. According to the temperature characteristics of different TWCs, three scenarios, representing old, current, and prospective TWC technology, are formulated to estimate the ORC performance under Worldwide Harmonized Light Vehicles Test Cycle. Results show that ORC system can substantially alleviate the thermal damage caused by high exhaust temperature and extend TWC lifespan. It is estimated that over 98.5 % of thermal damage can be decreased by proper ORC setting, and the average TWC lifespan extension can be at least 55.4, making a reduced noble metal usage and cost of TWC. Meanwhile, with the decrease of the working temperature of TWC, ORC can recover exhaust energy under more road conditions, further improving the net power and shortening the payback period of extra ORC hardware costs. A reduction in the working temperature of TWC from 770.5 K to 618 K yields a 109 % enhancement in maximum power, coupled with a 62.30 % reduction in the payback period. These findings fully reflect the advantage of ORC-TWC coupling and indicate that ORC is supposed to be used more for the TWC with a low working temperature to maximize economic effectiveness. This study provides a novel pathway for thermal aging alleviation of TWC and a valuable reference for prospective studies on matching ORC with TWC under road conditions.
Collapse
Affiliation(s)
- Chongyao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Xin Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Yunshan Ge
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Yonghong Xu
- Mechanical Electrical Engineering School, Beijing Information Science and Technology University, Xiaoying east road No.12, 100192 Beijing, China
| | - Lijun Hao
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Jianwei Tan
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Ruonan Li
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Miao Wen
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| | - Yachao Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, 100081 Beijing, China
| |
Collapse
|
2
|
Feng F, Li H, Yang X, Wang C, Zhao Y, Wang H, Du J. The Effect P Additive on the CeZrAl Support Properties and the Activity of the Pd Catalysts in Propane Oxidation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1003. [PMID: 38473476 DOI: 10.3390/ma17051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The properties of a catalyst support are closely related to the catalyst activity, yet the focus is often placed on the active species, with little attention given to the support properties. In this work, we specifically investigated the changes in support properties after the addition of P, as well as their impact on catalyst activity when used for catalyst preparation. We prepared the CeO2-ZrO2-P2O5-Al2O3 (CeZrPAl) composite oxides using the sol-gel, impregnation, and mechanical mixing methods, and characterized the support properties using techniques such as XRD, XPS, SEM-EDS, N2 adsorption-desorption, and Raman spectra. The results showed that the support prepared using the sol-gel method can exhibit a more stable phase structure, larger surface area, higher adsorption capacity for oxygen species, and greater oxygen storage capacity. The addition of an appropriate amount of P is necessary. On the one hand, the crystallization and growth of CePO4 can lead to a decrease in the Ce content in the cubic phase ceria-zirconia solid solution, resulting in a phase separation of the ceria-zirconia solid solution. On the other hand, CePO4 can lock some of the Ce3+/Ce4+ redox pairs, leading to a reduction in the adsorption of oxygen species and a decrease in the oxygen storage capacity of the CeZrPAl composite oxides. The research results indicated that the optimal P addition is 6 wt.% in the support. Therefore, we prepared a Pd/CeZrPAl catalyst using CeZrAl with 6 wt.% P2O5 as the support and conducted the catalytic oxidation of C3H8. Compared with the support without P added, the catalyst activity of the support loaded with P was significantly improved. The fresh and aged (1000 °C/5 h) catalysts decreased by 20 °C and 5 °C in T50 (C3H8 conversion temperature of 50%), and by 81 °C and 15 °C in T90 (C3H8 conversion temperature of 90%), respectively.
Collapse
Affiliation(s)
- Feng Feng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
- State-Local Joint Engineering Research Center of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalysts Co., Ltd., Kunming 650106, China
| | - Hong Li
- Yunnan Precious Metal Laboratory Co., Ltd., Kunming 650100, China
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650100, China
| | - Xingxia Yang
- State-Local Joint Engineering Research Center of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalysts Co., Ltd., Kunming 650106, China
- Yunnan Precious Metal Laboratory Co., Ltd., Kunming 650100, China
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650100, China
| | - Chengxiong Wang
- State-Local Joint Engineering Research Center of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalysts Co., Ltd., Kunming 650106, China
- Yunnan Precious Metal Laboratory Co., Ltd., Kunming 650100, China
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650100, China
| | - Yunkun Zhao
- State-Local Joint Engineering Research Center of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalysts Co., Ltd., Kunming 650106, China
- Yunnan Precious Metal Laboratory Co., Ltd., Kunming 650100, China
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650100, China
| | - Hua Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junchen Du
- State-Local Joint Engineering Research Center of Precious Metal Catalytic Technology and Application, Kunming Sino-Platinum Metals Catalysts Co., Ltd., Kunming 650106, China
- Yunnan Precious Metal Laboratory Co., Ltd., Kunming 650100, China
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650100, China
| |
Collapse
|
3
|
Metal–organic frameworks derived Ce0.3Ni0.7Ox carrier improve Pd dispersion and three-way catalytic performance. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Agote-Arán M, Jacobsen VV, Elsener M, Schütze FW, Schilling CM, Sridhar M, Katsaounis E, Kröcher O, Alxneit I, Ferri D. Thermal Sintering and Phosphorus Poisoning of a Layered Diesel Oxidation Catalyst. Top Catal 2022. [DOI: 10.1007/s11244-022-01752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe tightening emission regulations have led to the development of commercial DOCs with zoned or layered formulations allowing to cover a wide range of functionalities (i.e. CO, HC and NO oxidation as well as HC or NOx trap). Aging phenomena in such complex formulations are not well understood. To shed light on material deactivation, this study compares phosphorus poisoning and thermal sintering of two DOC monoliths with related formulations: (1) a commercial monolith comprising two catalytic layers where the top layer is rich in Pt, and (2) a model monolith containing only the top layer of the commercial monolith. The activity and characterisation (elemental analysis, microscopy and N2-physisorption) results are used to deconvolute the deactivation process of the two layers and should serve to rationalize the aging in layered catalyst formulations.
Collapse
|
5
|
Soto Beobide A, Moschovi AM, Mathioudakis GN, Kourtelesis M, Lada ZG, Andrikopoulos KS, Sygellou L, Dracopoulos V, Yakoumis I, Voyiatzis GA. High Catalytic Efficiency of a Nanosized Copper-Based Catalyst for Automotives: A Physicochemical Characterization. Molecules 2022; 27:7402. [PMID: 36364229 PMCID: PMC9657973 DOI: 10.3390/molecules27217402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/26/2024] Open
Abstract
The global trend in restrictions on pollutant emissions requires the use of catalytic converters in the automotive industry. Noble metals belonging to the platinum group metals (PGMs, platinum, palladium, and rhodium) are currently used for autocatalysts. However, recent efforts focus on the development of new catalytic converters that combine high activity and reduced cost, attracting the interest of the automotive industry. Among them, the partial substitution of PGMs by abundant non-PGMs (transition metals such as copper) seems to be a promising alternative. The PROMETHEUS catalyst (PROM100) is a polymetallic nanosized copper-based catalyst for automotives prepared by a wet impregnation method, using as a carrier an inorganic mixed oxide (CeO2-ZrO2) exhibiting elevated oxygen storage capacity. On the other hand, catalyst deactivation or ageing is defined as the process in which the structure and state of the catalyst change, leading to the loss of the catalyst's active sites with a subsequent decrease in the catalyst's performance, significantly affecting the emissions of the catalyst. The main scope of this research is to investigate in detail the effect of ageing on this low-cost, effective catalyst. To that end, a detailed characterization has been performed with a train of methods, such as SEM, Raman, XRD, XRF, BET and XPS, to both ceria-zirconia mixed inorganic oxide support (CZ-fresh and -aged) and to the copper-based catalyst (PROM100-fresh and -aged), revealing the impact of ageing on catalytic efficiency. It was found that ageing affects the Ce-Zr mixed oxide structure by initiating the formation of distinct ZrO2 and CeO2 structures monitored by Raman and XRD. In addition, it crucially affects the morphology of the sample by reducing the surface area by a factor of nearly two orders of magnitude and increasing particle size as indicated by BET and SEM due to sintering. Finally, the Pd concentration was found to be considerably reduced from the material's surface as suggested by XPS data. The above-mentioned alterations observed after ageing increased the light-off temperatures by more than 175 °C, compared to the fresh sample, without affecting the overall efficiency of the catalyst for CO and CH4 oxidation reactions. Metal particle and CeZr carrier sintering, washcoat loss as well as partial metal encapsulation by Cu and/or CeZrO4 are identified as the main causes for the deactivation after hydrothermal ageing.
Collapse
Affiliation(s)
- Amaia Soto Beobide
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - Georgios N. Mathioudakis
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - Zoi G. Lada
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | - Konstantinos S. Andrikopoulos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
- Department of Physics, University of Patras, 26504 Patras, Greece
| | - Labrini Sygellou
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | - Vassilios Dracopoulos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| | | | - George A. Voyiatzis
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences FORTH/ICE-HT, 26504 Patras, Greece
| |
Collapse
|
6
|
Bayram B, Önal I, Külah G. Thermal stability and SO2 resistance of Pd/Rh-perovskite based three-way catalyst wash-coated on cordierite monoliths. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bilal Bayram
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Işık Önal
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Görkem Külah
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
7
|
Tian L, Cheng R, Li L, Tan L, Xiang G, Xiong J. High performance of metal modified Pd catalyst for hydrodechlorination of chlorophenols to cyclohexanone. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Simultaneous production of lactate and formate from glycerol and carbonates over supported Pt catalysts. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Continuous 2-Methyl-3-butyn-2-ol Selective Hydrogenation on Pd/γ-Al2O3 as a Green Pathway of Vitamin A Precursor Synthesis. Catalysts 2021. [DOI: 10.3390/catal11040501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, the effect of pretreatment conditions (10% H2/Ar flow rate 25 mL/min and 400 °C, 3 h or 600 °C, 17 h) on the catalytic performance of 1 wt.% Pd/γ-Al2O3 has been evaluated for hydrogenation of 2-methyl-3-butyn-2-ol in continuous-flow mode. Two palladium catalysts have been tested under different conditions of pressure and temperature and characterized using various physicochemical techniques. The catalytic performance of red(400 °C)-Pd/γ-Al2O3 and red(600 °C)-Pd/γ-Al2O3 are affected by the coexistence of several related factors like the competition between PdH and PdCx formation during the reaction, structure sensitivity, hydrogen spillover to the alumina support and presence or absence of Pd–Al species. High-temperature reduction leads to formation of Pd–Al species in addition to pure Pd. The Pd–Al species which reveal unique electronic properties by decreasing the Pdδ− surface concentration via electron transfer from Pd to Al, leading to a weaker Pd–Alkyl bonding, additionally assisted by the hydrogen spillover, are the sites of improved semi-hydrogenation of 2-methyl-3-butyn-2-ol towards 2-methyl-3-buten-2-ol (97%)—an important intermediate for vitamin A synthesis.
Collapse
|
10
|
Lokteva ES, Shishova VV, Tolkachev NN, Kharlanov AN, Maslakov KI, Kamaev AO, Kaplin IY, Savina IN, Golubina EV. Hydrodechlorination of 4-Chlorophenol on Pd-Fe Catalysts on Mesoporous ZrO 2SiO 2 Support. Molecules 2020; 26:molecules26010141. [PMID: 33396955 PMCID: PMC7795707 DOI: 10.3390/molecules26010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/20/2022] Open
Abstract
A mesoporous support based on silica and zirconia (ZS) was used to prepare monometallic 1 wt% Pd/ZS, 10 wt% Fe/ZS, and bimetallic FePd/ZS catalysts. The catalysts were characterized by TPR-H2, XRD, SEM-EDS, TEM, AAS, and DRIFT spectroscopy of adsorbed CO after H2 reduction in situ and tested in hydrodechlorination of environmental pollutant 4-chlorophelol in aqueous solution at 30 °C. The bimetallic catalyst demonstrated an excellent activity, selectivity to phenol and stability in 10 consecutive runs. FePd/ZS has exceptional reducibility due to the high dispersion of palladium and strong interaction between FeOx and palladium, confirmed by TPR-H2, DRIFT spectroscopy, XRD, and TEM. Its reduction occurs during short-time treatment with hydrogen in an aqueous solution at RT. The Pd/ZS was more resistant to reduction but can be activated by aqueous phenol solution and H2. The study by DRIFT spectroscopy of CO adsorbed on Pd/ZS reduced in harsh (H2, 330 °C), medium (H2, 200 °C) and mild conditions (H2 + aqueous solution of phenol) helped to identify the reasons of the reducing action of phenol solution. It was found that phenol provided fast transformation of Pd+ to Pd0. Pd/ZS also can serve as an active and stable catalyst for 4-PhCl transformation to phenol after proper reduction.
Collapse
Affiliation(s)
- Ekaterina S. Lokteva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
- Correspondence: ; Tel.: +7-916-780-3363
| | - Vera V. Shishova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| | - Nikolay N. Tolkachev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Andrey N. Kharlanov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| | - Konstantin I. Maslakov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| | - Alexey O. Kamaev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| | - Igor Yu. Kaplin
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| | - Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Elena V. Golubina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (V.V.S.); (A.N.K.); (K.I.M.); (A.O.K.); (I.Y.K.); (E.V.G.)
| |
Collapse
|
11
|
Zhang G, Chen J, Wu Y, Liu X, Qu P, Shen P, Zhong L, Chen Y. Pd supported on alumina modified by phosphate: Highly phosphorus-resistant three-way catalyst for natural gas vehicles. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Simultaneous Catalytic Oxidation of a Lean Mixture of CO-CH4 over Spinel Type Cobalt Based Oxides. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.2.6499.490-500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
13
|
Marchionni V, Nachtegaal M, Ferri D. Influence of CO on Dry CH 4 Oxidation on Pd/Al 2O 3 by Operando Spectroscopy: A Multitechnique Modulated Excitation Study. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Davide Ferri
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
14
|
Fovanna T, Campisi S, Villa A, Kambolis A, Peng G, Rentsch D, Kröcher O, Nachtegaal M, Ferri D. Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Adv 2020; 10:11507-11516. [PMID: 35495338 PMCID: PMC9050498 DOI: 10.1039/d0ra00415d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/Al2O3 based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H2, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character. As a result, the phosphorous-based catalyst obtained after reduction was more active for catalytic transfer hydrogenation of furfural and more stable against Ru leaching under these conditions than a benchmark Ru catalyst supported on activated carbon. Phosphorous induces structural changes in Ru/Al2O3 that make it more active and more stable for liquid phase hydrogenation of furfural.![]()
Collapse
Affiliation(s)
- Thibault Fovanna
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781.,École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Sebastiano Campisi
- Dipartimento di Chimica, Università degli Studi di Milano I-20133 Milano Italy +39 02 503 14361
| | - Alberto Villa
- Dipartimento di Chimica, Università degli Studi di Milano I-20133 Milano Italy +39 02 503 14361
| | | | - Gael Peng
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781
| | - Daniel Rentsch
- Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Oliver Kröcher
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781.,École polytechnique fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | | | - Davide Ferri
- Paul Scherrer Institut CH-5232 Villigen PSI Switzerland +41 56 310 2781
| |
Collapse
|
15
|
Sato K, Ito A, Tomonaga H, Kanematsu H, Wada Y, Asakura H, Hosokawa S, Tanaka T, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K. Pt-Co Alloy Nanoparticles on a γ-Al 2 O 3 Support: Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification. Chempluschem 2020; 84:447-456. [PMID: 31943901 DOI: 10.1002/cplu.201800542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/06/2018] [Indexed: 11/11/2022]
Abstract
There is interest in minimizing or eliminating the use of Pt in catalysts by replacing it with more widely abundant and cost-effective elements. The alloying of Pt with non-noble metals is a potential strategy for reducing Pt use because interactions between Pt and non-noble metals can modify the catalyst structure and electronic properties. Here, a γ-Al2 O3 -supported bimetallic catalyst [Pt(0.1)Co(1)/Al2 O3 ] was prepared which contained 0.1 wt % Pt and 1 wt % Co and thus featured an extremely low Pt : Co ratio (<1 : 30 mol/mol). The Pt and Co in this catalyst formed alloy nanoparticles in which isolated electron-rich Pt atoms were present on the nanoparticle surface. The activity of this Pt(0.1)Co(1)/Al2 O3 catalyst for the purification of automotive exhaust was comparable to the activities of 0.3 and 0.5 wt % Pt/γ-Al2 O3 catalysts. Electron-rich Pt and metallic Co promoted activation of NOx and oxidization of CO and hydrocarbons, respectively. This strategy of tuning the surrounding structure and electronic state of a noble metal by alloying it with an excess of a non-noble metal will enable reduced noble metal use in catalysts for exhaust purification and other environmentally important reactions.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.,Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| | - Ayano Ito
- Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| | - Hiroyuki Tomonaga
- Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| | - Homare Kanematsu
- Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| | - Yuichiro Wada
- Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| | - Hiroyuki Asakura
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.,Department of Molecular Engineering Graduate School of Engineering, Kyoto University Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Saburo Hosokawa
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.,Department of Molecular Engineering Graduate School of Engineering, Kyoto University Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tsunehiro Tanaka
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.,Department of Molecular Engineering Graduate School of Engineering, Kyoto University Kyotodaigaku Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Syo Matsumura
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Katsutoshi Nagaoka
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245, Japan.,Department of Integrated Science and Technology Faculty of Science and Technology, Oita University 700 Dannoharu, Oita, 870-1192, Japan
| |
Collapse
|
16
|
Huang C, Shan W, Lian Z, Zhang Y, He H. Recent advances in three-way catalysts of natural gas vehicles. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01320j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents recent advances in TWCs for NGVs, particularly for Pd-based catalysts and potential alternatives.
Collapse
Affiliation(s)
- Cenyan Huang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
| | - Zhihua Lian
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
| |
Collapse
|
17
|
Farrauto RJ, Deeba M, Alerasool S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat Catal 2019. [DOI: 10.1038/s41929-019-0312-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Li J, Li M, Gui P, Zheng L, Liang J, Xue G. Hydrothermal synthesis of sandwich interspersed LaCO3OH/Co3O4/graphene oxide composite and the enhanced catalytic performance for methane combustion. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Radlik M, Śrębowata A, Juszczyk W, Matus K, Małolepszy A, Karpiński Z. n-Hexane conversion on γ-alumina supported palladium–platinum catalysts. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Alkane isomerization on highly reduced Pd/Al2O3 catalysts. The crucial role of Pd-Al species. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Microstructural Characteristics of Vehicle-Aged Heavy-Duty Diesel Oxidation Catalyst and Natural Gas Three-Way Catalyst. Catalysts 2019. [DOI: 10.3390/catal9020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Techniques to control vehicle engine emissions have been under increasing need for development during the last few years in the more and more strictly regulated society. In this study, vehicle-aged heavy-duty catalysts from diesel and natural gas engines were analyzed using a cross-sectional electron microscopy method with both a scanning electron microscope and a transmission electron microscope. Also, additional supporting characterization methods including X-ray diffractometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and catalytic performance analyses were used to reveal the ageing effects. Structural and elemental investigations were performed on these samples, and the effect of real-life ageing of the catalyst was studied in comparison with fresh catalyst samples. In the real-life use of two different catalysts, the poison penetration varied greatly depending on the engine and fuel at hand: the diesel oxidation catalyst appeared to suffer more thorough changes than the natural gas catalyst, which was affected only in the inlet part of the catalyst. The most common poison, sulphur, in the diesel oxidation catalyst was connected to cerium-rich areas. On the other hand, the severities of the ageing effects were more pronounced in the natural gas catalyst, with heavy structural changes in the washcoat and high concentrations of poisons, mainly zinc, phosphorus and silicon, on the surface of the inlet part.
Collapse
|
22
|
Catalytic performance of a Pt-Rh/CeO 2 -ZrO 2 -La 2 O 3 -Nd 2 O 3 three-way compress nature gas catalyst prepared by a modified double-solvent method. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60987-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Sadokhina N, Ghasempour F, Auvray X, Smedler G, Nylén U, Olofsson M, Olsson L. An Experimental and Kinetic Modelling Study for Methane Oxidation over Pd-based Catalyst: Inhibition by Water. Catal Letters 2017. [DOI: 10.1007/s10562-017-2133-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sato K, Tomonaga H, Yamamoto T, Matsumura S, Zulkifli NDB, Ishimoto T, Koyama M, Kusada K, Kobayashi H, Kitagawa H, Nagaoka K. A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd-Ru Solid-solution Alloy Nanoparticles. Sci Rep 2016; 6:28265. [PMID: 27340099 PMCID: PMC4919684 DOI: 10.1038/srep28265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023] Open
Abstract
Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd–Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.,Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Hiroyuki Tomonaga
- Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.,INAMORI Frontier Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nor Diana Binti Zulkifli
- Department of Hydrogen Energy Systems, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayoshi Ishimoto
- INAMORI Frontier Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Michihisa Koyama
- INAMORI Frontier Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Hydrogen Energy Systems, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hirokazu Kobayashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- INAMORI Frontier Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.,Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsutoshi Nagaoka
- Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| |
Collapse
|
25
|
Kärkkäinen M, Kolli T, Honkanen M, Heikkinen O, Väliheikki A, Huuhtanen M, Kallinen K, Lahtinen J, Vippola M, Keiski RL. The Influence of Phosphorus Exposure on a Natural-Gas-Oxidation Catalyst. Top Catal 2016. [DOI: 10.1007/s11244-016-0587-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Impact of Lubricant Additives on thePhysicochemical Properties and Activity of Three‐Way Catalysts. Catalysts 2016. [DOI: 10.3390/catal6040054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Part II: Oxidative Thermal Aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in Automotive Three Way Catalysts: The Effects of Fuel Shutoff and Attempted Fuel Rich Regeneration. Catalysts 2015. [DOI: 10.3390/catal5041797] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Honkanen M, Kärkkäinen M, Heikkinen O, Kallinen K, Kolli T, Huuhtanen M, Lahtinen J, Keiski RL, Lepistö T, Vippola M. The Effect of Phosphorus Exposure on Diesel Oxidation Catalysts—Part II: Characterization of Structural Changes by Transmission Electron Microscopy. Top Catal 2015. [DOI: 10.1007/s11244-015-0465-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Mitrano DM, Motellier S, Clavaguera S, Nowack B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. ENVIRONMENT INTERNATIONAL 2015; 77:132-47. [PMID: 25705000 DOI: 10.1016/j.envint.2015.01.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 05/20/2023]
Abstract
In the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed. The focus is on processes resulting in ENP release and on the transformation(s) the released particles undergo in the use and disposal phases of its product life cycle for several nanomaterials (Ag, ZnO, TiO2, carbon nanotubes, CeO2, SiO2 etc.). These include photochemical transformations, oxidation and reduction, dissolution, precipitation, adsorption and desorption, combustion, abrasion and biotransformation, among other biogeochemical processes. To date, few studies have tried to establish what changes the ENPs undergo when they are incorporated into, and released from, products. As a result there is major uncertainty as to the state of many ENPs following their release because much of current testing on pristine ENPs may not be fully relevant for risk assessment purposes. The goal of this present review is therefore to use knowledge on the life cycle of nano-products to derive possible transformations common ENPs in nano-products may undergo based on how these products will be used by the consumer and eventually discarded. By determining specific gaps in knowledge of the ENP transformation process, this approach should prove useful in narrowing the number of physical experiments that need to be conducted and illuminate where more focused effort can be placed.
Collapse
Affiliation(s)
- Denise M Mitrano
- EMPA - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | - Sylvie Motellier
- CEA Commissariat à l'Energie Atomique et aux Energies Alternatives, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Simon Clavaguera
- CEA Commissariat à l'Energie Atomique et aux Energies Alternatives, 17, Rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Bernd Nowack
- EMPA - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
30
|
Satsuma A, Tojo T, Okuda K, Yamamoto Y, Arai S, Oyama J. Effect of preparation method of Co-promoted Pd/alumina for methane combustion. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Chiarello GL, Ferri D. Modulated excitation extended X-ray absorption fine structure spectroscopy. Phys Chem Chem Phys 2015; 17:10579-91. [DOI: 10.1039/c5cp00609k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulated excitation improves the sensitivity of EXAFS by phase sensitive detection as demonstrated by simulated and experimental time-resolved FT-EXAFS spectra.
Collapse
Affiliation(s)
- Gian Luca Chiarello
- Università degli Studi di Milano
- Dipartimento di Chimica
- I-20133 Milano
- Italy
- Empa, Swiss Federal Laboratories for Materials Science and Technology
| | - Davide Ferri
- Paul Scherrer Institut
- CH-5232 Villigen PSI
- Switzerland
| |
Collapse
|
32
|
Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV. Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today 2014. [DOI: 10.1016/j.cattod.2014.02.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Lu Y, Keav S, Marchionni V, Chiarello GL, Pappacena A, Di Michiel M, Newton MA, Weidenkaff A, Ferri D. Ageing induced improvement of methane oxidation activity of Pd/YFeO3. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00289j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
Ferri D, Newton MA, Di Michiel M, Yoon S, Chiarello GL, Marchionni V, Matam SK, Aguirre MH, Weidenkaff A, Wen F, Gieshoff J. Synchrotron high energy X-ray methods coupled to phase sensitive analysis to characterize aging of solid catalysts with enhanced sensitivity. Phys Chem Chem Phys 2013; 15:8629-39. [PMID: 23657925 DOI: 10.1039/c3cp44638g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray absorption spectroscopy and X-ray diffraction are suitable probes of the chemical state of a catalyst under working conditions but are limited to bulk information. Here we show in two case studies related to hydrothermal aging and chemical modification of model automotive catalysts that enhanced detailed information of structural changes can be obtained when the two methods are combined with a concentration modulated excitation (cME) approach and phase sensitive detection (PSD). The catalysts are subject to a modulation experiment consisting of the periodic variation of the gas feed composition to the catalyst and the time-resolved data are additionally treated by PSD. In the case of a 2 wt% Rh/Al2O3 catalyst, a very small fraction (ca. 2%) of Rh remaining exposed at the alumina surface after hydrothermal aging at 1273 K can be detected by PSD. This Rh is sensitive to the red-ox oscillations of the experiment and is likely responsible for the observed catalytic activity and selectivity during NO reduction by CO. In the case of a 1.6 wt% Pd/Al2O3-Ce(1-x)Zr(x)O2 catalyst, preliminary results of cME-XRD demonstrate that access to the kinetics of the whole material at work can be obtained. Both the red-ox processes involving the oxygen storage support and the Pd component can be followed with great precision. PSD enables the differentiation between Pd deposited on Al2O3 or on Ce(1-x)Zr(x)O2. Modification of the catalyst by phosphorous clearly induces loss of the structural dynamics required for oxygen storage capacity that is provided by the Ce(4+)/Ce(3+) pair. The two case studies demonstrate that detailed kinetics of subtle changes can be uncovered by the combination of in situ X-ray absorption and high energy diffraction methods with PSD.
Collapse
Affiliation(s)
- Davide Ferri
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Observations on the Aging Environment Dependent NO Oxidation Activity of Model Pt/Al2O3 Diesel Oxidation Catalyst. Top Catal 2013. [DOI: 10.1007/s11244-013-9975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Ziaei-azad H, Yin CX, Shen J, Hu Y, Karpuzov D, Semagina N. Size- and structure-controlled mono- and bimetallic Ir–Pd nanoparticles in selective ring opening of indan. J Catal 2013. [DOI: 10.1016/j.jcat.2013.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Matam SK, Newton MA, Weidenkaff A, Ferri D. Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Matam SK, Chiarello GL, Lu Y, Weidenkaff A, Ferri D. PdO x /Pd at Work in a Model Three-Way Catalyst for Methane Abatement Monitored by Operando XANES. Top Catal 2013. [DOI: 10.1007/s11244-013-9960-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|