1
|
Hasan MH, McCrum IT. pKa as a Predictive Descriptor for Electrochemical Anion Adsorption. Angew Chem Int Ed Engl 2024; 63:e202313580. [PMID: 38340075 DOI: 10.1002/anie.202313580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
The adsorption of anions onto metal surfaces is important in many applications including effective (electro)catalyst design, metal surface modification, and contaminant removal in wastewater treatment. In electrocatalysis, anions can be both reactive intermediates or site-blocking spectators, where their adsorption strength therefore dictates the rate of reaction. In this work, we have measured the adsorption energy of a series of carboxylic acids on a Pt (111) single-crystal electrode surface from aqueous solution. We find that the adsorption strength of the carboxylate anion is linearly correlated with its acid-dissociation constant (pKa) and therefore the heterolytic O-H bond dissociation strength in solution. Using density functional theory modeling, we split the anion adsorption energy into a sum of the adsorption energy and electron affinity of a neutral (carboxyl) radical. Surprisingly, the adsorption energy of the carboxyl radicals are similar and therefore the large difference in electron affinity is what dictates anion adsorption strength; the greater the cost in energy to remove the electron from the anion upon adsorption, the weaker its binding. Therefore, at least within a class of anions with similar structure and surface binding atoms, both electron affinity and acidity are predictive descriptors of adsorption strength.
Collapse
Affiliation(s)
- Mohammad H Hasan
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699
| |
Collapse
|
2
|
Ghelichkhah Z, Srinivasan R, Macdonald DD, Ferguson GS. Anion-Catalyzed Active Dissolution Model for the Electrochemical Adsorption of Bisulfate, Sulfate, and Oxygen on Gold in H2SO4 Solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Kamat GA, Zamora Zeledón JA, Gunasooriya GTKK, Dull SM, Perryman JT, Nørskov JK, Stevens MB, Jaramillo TF. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun Chem 2022; 5:20. [PMID: 36697647 PMCID: PMC9814610 DOI: 10.1038/s42004-022-00635-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
Platinum is an important material with applications in oxygen and hydrogen electrocatalysis. To better understand how its activity can be modulated through electrolyte effects in the double layer microenvironment, herein we investigate the effects of different acid anions on platinum for the oxygen reduction/evolution reaction (ORR/OER) and hydrogen evolution/oxidation reaction (HER/HOR) in pH 1 electrolytes. Experimentally, we see the ORR activity trend of HClO4 > HNO3 > H2SO4, and the OER activity trend of HClO4 [Formula: see text] HNO3 ∼ H2SO4. HER/HOR performance is similar across all three electrolytes. Notably, we demonstrate that ORR performance can be improved 4-fold in nitric acid compared to in sulfuric acid. Assessing the potential-dependent role of relative anion competitive adsorption with density functional theory, we calculate unfavorable adsorption on Pt(111) for all the anions at HER/HOR conditions while under ORR/OER conditions [Formula: see text] binds the weakest followed by [Formula: see text] and [Formula: see text]. Our combined experimental-theoretical work highlights the importance of understanding the role of anions across a large potential range and reveals nitrate-like electrolyte microenvironments as interesting possible sulfonate alternatives to mitigate the catalyst poisoning effects of polymer membranes/ionomers in electrochemical systems. These findings help inform rational design approaches to further enhance catalyst activity via microenvironment engineering.
Collapse
Affiliation(s)
- Gaurav Ashish Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Samuel M Dull
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Joseph T Perryman
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
5
|
Estejab A, García Cárcamo RA, Getman RB. Influence of an electrified interface on the entropy and energy of solvation of methanol oxidation intermediates on platinum(111) under explicit solvation. Phys Chem Chem Phys 2022; 24:4251-4261. [PMID: 35107094 DOI: 10.1039/d1cp05358b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid water and electric fields play significant roles in phenomena occurring at catalytic and electrocatalytic interfaces; however, how their interplay influences interfacial energetics remains uncertain. Electric fields control the orientations of water molecules, which we hypothesized would influence the solvation thermodynamics of surface species. To explore this hypothesis, we used multiscale simulations involving density functional theory and classical molecular dynamics. We computed the energies and entropies of solvation of surface species on Pt(111), specifically, adsorbed CH3OH, COH, and CO, which are intermediates in the pathway of methanol oxidation, in the presence of electric fields spanning -0.5 to +0.5 V Å-1. We found that both the energy and entropy of solvation depend on the strength and direction of the field, with the entropy of solvation being significantly impacted. Both the energy and entropy dependence on the field can be ascribed to water molecule orientations. Specifically, more positive fields orient water molecules so that they can more effectively hydrogen bond with surface species, which strengthens the energies of solvation. However, at more negative fields, competition with the surface species causes interfacial water molecules to reorient, which leads to disorder in the water structure and hence increased entropy.
Collapse
Affiliation(s)
- Ali Estejab
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634-0909, USA.
| | - Ricardo A García Cárcamo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634-0909, USA.
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634-0909, USA.
| |
Collapse
|
6
|
Electrochemical study in acid aqueous solution and ex-situ X-ray photoelectron spectroscopy analysis of metallic rhenium surface. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zamora Zeledón JA, Kamat GA, Gunasooriya GTKK, Nørskov JK, Stevens MB, Jaramillo TF. Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José A. Zamora Zeledón
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 United States
| | - Gaurav Ashish Kamat
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 United States
| | | | - Jens K. Nørskov
- Catalysis Theory Center Department of Physics Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Michaela Burke Stevens
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 United States
| | - Thomas F. Jaramillo
- Department of Chemical Engineering Stanford University 443 Via Ortega Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 United States
| |
Collapse
|
8
|
Granda-Marulanda LP, McCrum IT, Koper MTM. A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:204001. [PMID: 33761487 DOI: 10.1088/1361-648x/abf19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Determining the adsorption potential of adsorbed ions in the field of computational electrocatalysis is of great interest to study their interaction with the electrode material and the solvent, and to map out surface phase diagrams and reaction pathways. Calculating the adsorption potentials of ions with density functional theory and comparing across various ions requires an accurate reference energy of the ion in solution and electrons at the same electrochemical scale. Here we highlight a previously used method for determining the reference free energy of solution phase ions using a simple electrochemical thermodynamic cycle, which allows this free energy to be calculated from that of a neutral gas-phase or solid species and an experimentally measured equilibrium potential, avoiding the need to model solvent around the solution phase ion in the electronic structure calculations. While this method is not new, we describe its use and utility in detail and show that this same method can be used to find the free energy of any ion from any reaction, as long as the half-cell equilibrium potential is known, even for reactions that do not transfer the same number of protons and electrons. To illustrate its usability, we compare the adsorption potentials obtained with DFT of I*, Br*, Cl*, and SO4*on Pt(111) and Au(111) and OH*and Ag*on Pt(111) with those measured experimentally and find that this simple and computationally affordable method reproduces the experimental trends.
Collapse
Affiliation(s)
| | - Ian T McCrum
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Department of Chemical & Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, United States of America
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Cao J, Song N, Chen W, Cao Y, Qian G, Duan X, Zhou X. Role of C-Defective Sites in CO Adsorption over ϵ-Fe 2 C and η-Fe 2 C Fischer-Tropsch Catalysts. Chem Asian J 2020; 15:4014-4022. [PMID: 33094915 DOI: 10.1002/asia.202000995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Indexed: 11/06/2022]
Abstract
Herein, we report the crucial importance of C-defective sites on the CO adsorption over ϵ-Fe2 C and η-Fe2 C Fischer-Tropsch catalysts via systematic DFT calculations. The simulated XRD and Wulff construction show the significant differences in their equilibrium shapes and most exposed surfaces. It is observed that the ϵ-Fe2 C exposes a high proportion (89 %) of facets (1 2 ‾ 1) with similar structure to that of η-Fe2 C (011) which has been proved to be the active surface of CO activation.
Collapse
Affiliation(s)
- Junbo Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Nan Song
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
10
|
Gossenberger F, Juarez F, Groß A. Sulfate, Bisulfate, and Hydrogen Co-adsorption on Pt(111) and Au(111) in an Electrochemical Environment. Front Chem 2020; 8:634. [PMID: 32850652 PMCID: PMC7411137 DOI: 10.3389/fchem.2020.00634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
The co-adsorption of sulfate, bisulfate and hydrogen on Pt(111) and Au(111) electrodes was studied based on periodic density functional calculations with the aqueous electrolyte represented by both explicit and implicit solvent models. The influence of the electrochemical control parameters such as the electrode potential and pH was taken into account in a grand-canonical approach. Thus, phase diagrams of the stable coadsorption phases as a function of the electrochemical potential and Pourbaix diagrams have been derived which well reproduce experimental findings. We demonstrate that it is necessary to include explicit water molecules in order to determine the stable adsorbate phases as the (bi)sulfate adsorbates rows become significantly stabilized by bridging water molecules.
Collapse
Affiliation(s)
| | - Fernanda Juarez
- Institute of Theoretical Chemistry, Ulm University, Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Xiong Y, Dong J, Huang ZQ, Xin P, Chen W, Wang Y, Li Z, Jin Z, Xing W, Zhuang Z, Ye J, Wei X, Cao R, Gu L, Sun S, Zhuang L, Chen X, Yang H, Chen C, Peng Q, Chang CR, Wang D, Li Y. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. NATURE NANOTECHNOLOGY 2020; 15:390-397. [PMID: 32231268 DOI: 10.1038/s41565-020-0665-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Chemistry, Tsinghua University, Beijing, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Pingyu Xin
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Wenxing Chen
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhao Jin
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun, Jilin, China
| | - Wei Xing
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Jilin Province Key Laboratory of Low Carbon Chemical Power Sources, Changchun, Jilin, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xing Wei
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Chen X, Granda-Marulanda LP, McCrum IT, Koper MTM. Adsorption processes on a Pd monolayer-modified Pt(111) electrode. Chem Sci 2020; 11:1703-1713. [PMID: 34084392 PMCID: PMC8148025 DOI: 10.1039/c9sc05307g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specific adsorption of anions is an important aspect in surface electrochemistry for its influence on reaction kinetics in either a promoted or inhibited fashion. Perchloric acid is typically considered as an ideal electrolyte for investigating electrocatalytic reactions due to the lack of specific adsorption of the perchlorate anion on several metal electrodes. In this work, cyclic voltammetry and computational methods are combined to investigate the interfacial processes on a Pd monolayer deposited on Pt(111) single crystal electrode in perchloric acid solution. The “hydrogen region” of this PdMLPt(111) surface exhibits two voltammetric peaks: the first “hydrogen peak” at 0.246 VRHE actually involves the replacement of hydrogen by hydroxyl, and the second “hydrogen peak” HII at 0.306 VRHE appears to be the replacement of adsorbed hydroxyl by specific perchlorate adsorption. The two peaks merge into a single peak when a more strongly adsorbed anion, such as sulfate, is involved. Our density functional theory calculations qualitatively support the peak assignment and show that anions generally bind more strongly to the PdMLPt(111) surface than to Pt(111). Specific adsorption of anions is an important aspect in surface electrochemistry for its influence on reaction kinetics in either a promoted or inhibited fashion.![]()
Collapse
Affiliation(s)
- Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA The Netherlands
| | | | - Ian T McCrum
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA The Netherlands
| |
Collapse
|
13
|
Santana JA, Ishikawa Y. DFT Calculations of the Electrochemical Adsorption of Sulfuric Acid Anions on the Pt(110) and Pt(100) Surfaces. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Li Y, Liu ZF. Modeling the effect of an anion on the free energy surfaces along the reaction pathways of oxygen reduction on Pt(1 1 1). Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Zhang IY, Zwaschka G, Wang Z, Wolf M, Campen RK, Tong Y. Resolving the chemical identity of H 2SO 4 derived anions on Pt(111) electrodes: they're sulfate. Phys Chem Chem Phys 2019; 21:19147-19152. [PMID: 31432808 DOI: 10.1039/c9cp03397a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Understanding how electrolyte composition controls electrocatalytic reactions requires molecular-level insight into electrode/electrolyte interaction. Perhaps the most basic aspect of this interaction, the speciation of the interfacial ion, is often controversial for even relatively simple systems. For example, for Pt(111) in 0.5 M H2SO4 it has long been debated whether the adsorbed anion is SO42-, HSO4- or an H3O+SO42- ion pair. Here we apply interface-specific vibrational sum frequency (VSF) spectroscopy and theory to this problem and perform an isotope exchange study: we collect VSF spectra of Pt(111) in H2SO4(H2O) and D2SO4(D2O) as a function of bias and show that at all potentials they are identical. This is the most direct spectroscopic evidence to date that SO42- is the dominant adsorbate, despite the fact that at 0.5 M H2SO4 bulk solution is dominated by HSO4-. This approach is based on the unique selection rule of the VSF spectroscopy and thus offers a new way of accessing general electrode/electrolyte interaction in electrocatalysis.
Collapse
Affiliation(s)
- Igor Ying Zhang
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany. and Department of Chemistry, Fudan University, 200433 Shanghai, China.
| | - Gregor Zwaschka
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Zhenhua Wang
- School of Chemical Engineering and Environmental, Beijing Institute of Technology, 100081 Beijing, China
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - R Kramer Campen
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| |
Collapse
|
16
|
|
17
|
Nishikawa H, Yano H, Inukai J, Tryk DA, Iiyama A, Uchida H. Effects of Sulfate on the Oxygen Reduction Reaction Activity on Stabilized Pt Skin/PtCo Alloy Catalysts from 30 to 80 °C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13558-13564. [PMID: 30378419 DOI: 10.1021/acs.langmuir.8b02945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effects of the concentration of H2SO4 ([H2SO4]), which is the major decomposition product of polymer electrolyte membranes during the operation of fuel cells, on the performance of stabilized Pt skin/PtCo alloy nanocatalysts supported on high-surface-area carbon (PtxAL-PtCo/C) were investigated. Kinetically controlled activities for the oxygen reduction reaction (ORR) and the H2O2 yields ( P(H2O2)) on the PtxAL-PtCo/C were examined based on hydrodynamic voltammograms in O2-saturated 0.1 M HClO4 + X M H2SO4 ( X = 0 to 5 × 10-2) by use of the channel flow double electrode method at temperatures between 30 and 80 °C. At X ≤ 10-6 (1 μM) and all temperatures examined, the apparent ORR rate constants kapp@0.85 V (per unit electrochemically active surface area) on PtxAL-PtCo/C at 0.85 V vs the reversible hydrogen electrode (RHE) were nearly identical with those in sulfate-free 0.1 M HClO4 and were at least twice as high as those on a commercial Pt/C catalyst (c-Pt/C). The values of kapp@0.85 V on both PtxAL-PtCo/C and c-Pt/C decreased linearly with log[H2SO4] in the concentration range 10-6 < X ≤ 5 × 10-2. The detrimental effect by H2SO4 was less pronounced on PtxAL-PtCo/C than on c-Pt/C at high temperatures; the kapp@0.85 V value at X = 5 × 10-2 on the former at 80 °C was maintained as high as 87%, whereas that of the latter was 66% (34% loss). The values of peroxide production percentage P(H2O2) on PtxAL-PtCo/C at 80 °C were nearly constant (ca. 0.22% at 0.76 V vs RHE) up to X = 5 × 10-2. These superior characteristics are ascribed to weakened adsorption of sulfate on the Pt skin surface, supported by DFT calculations, which provides the great advantage of robustness in the presence of impurities, maintaining active sites for the ORR during the PEFC operation.
Collapse
Affiliation(s)
| | - Hiroshi Yano
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Junji Inukai
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Donald A Tryk
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Akihiro Iiyama
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| | - Hiroyuki Uchida
- Fuel Cell Nanomaterials Center , University of Yamanashi , 6-43 Miyamae-cho , Kofu 400-0021 , Japan
| |
Collapse
|
18
|
Maheshwari S, Li Y, Agrawal N, Janik MJ. Density functional theory models for electrocatalytic reactions. ADVANCES IN CATALYSIS 2018. [DOI: 10.1016/bs.acat.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Smedley SB, Zimudzi TJ, Chang Y, Bae C, Hickner MA. Spectroscopic Characterization of Sulfonate Charge Density in Ion-Containing Polymers. J Phys Chem B 2017; 121:11504-11510. [DOI: 10.1021/acs.jpcb.7b06904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah B. Smedley
- Department
of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tawanda J. Zimudzi
- Department
of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ying Chang
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael A. Hickner
- Department
of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
Electron transfer kinetics of the ferrous/ferric redox system on the platinum deposits on gold. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Montemore MM, Andreussi O, Medlin JW. Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111). J Chem Phys 2016; 145:074702. [PMID: 27544118 DOI: 10.1063/1.4961027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydrocarbon chains are important intermediates in various aqueous-phase surface processes, such as CO2 electroreduction, aqueous Fischer-Tropsch synthesis, and aqueous phase reforming of biomass-derived molecules. Further, the interaction between water and adsorbed hydrocarbons represents a difficult case for modern computational methods. Here, we explore various methods for calculating the energetics of this interaction within the framework of density functional theory and explore trade-offs between the use of low water coverages, molecular dynamics approaches, and minima hopping for identification of low energy structures. An effective methodology for simulating low temperature processes is provided by using a unit cell in which the vacuum space is filled with water, employing the minima hopping algorithm to search for low-lying minima, and including dispersion (van der Waals) interactions. Using this methodology, we show that a high coverage of adsorbed alkyls is destabilized by the presence of water, while a low coverage of alkyls is stabilized. Solvation has a small effect on the energetics of hydrocarbon chain growth, generally decreasing its favorability at low temperatures. We studied higher temperatures by running molecular dynamics simulations starting at the minima found by the minima hopping algorithm and found that increased temperatures facilitate chain growth. The self-consistent continuum solvation method effectively describes the alkyl-water interaction and is in general agreement with the explicit solvation results in most cases, but care should be taken at high alkyl coverage.
Collapse
Affiliation(s)
- Matthew M Montemore
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, Boulder, Colorado 80309, USA
| | - Oliviero Andreussi
- Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, Via G. Buffi 13, 6904 Lugano, Switzerland
| | - J Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, UCB 596, Boulder, Colorado 80309, USA
| |
Collapse
|
22
|
Zimudzi TJ, Hickner MA. Signal Enhanced FTIR Analysis of Alignment in NAFION Thin Films at SiO 2 and Au Interfaces. ACS Macro Lett 2016; 5:83-87. [PMID: 35668583 DOI: 10.1021/acsmacrolett.5b00800] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin-cast NAFION samples were prepared on silicon native oxide and gold substrates with film thicknesses ranging from 5 to 250 nm. The influence of NAFION film thickness on the infrared spectrum of the polymer was investigated in substrate overlayer attenuated total reflection (SO-ATR) geometry at incident angles between 60° and 65°. In the grazing angle SO-ATR geometry, the thickness of the film significantly affected the position and absorbance of characteristic peaks in the FTIR spectrum of NAFION. Two major peaks in the NAFION spectrum at 1220 cm-1 (predominantly vas(CF2) and vas(SO3-)) and 1150 cm-1 (predominantly vas(CF2)) appeared to systematically blueshift to 1256 and 1170 cm-1, respectively, as the thickness of the film decreased from 250 to 5 nm. The changes in the NAFION thin film FTIR spectrum can be attributed to two factors; (1) ordering of NAFION at the interface during spin coating and film formation and (2) the increase in the p-polarization character of the infrared evanescent wave as the polymer film became thinner between the internal reflection element and the film substrate overlayer. The increase in p-polarization resulted in an increase in characteristic peak absorbances of dipoles aligned normal to the substrate due to the overlayer enhancement of the electric field with NAFION films on Si or Au film substrates. These results show that the specific thin film sampling geometry, especially in internal reflection experiments, must be considered to rationally quantify changes in NAFION thin film infrared spectra.
Collapse
Affiliation(s)
- Tawanda J. Zimudzi
- Department of Material Science
and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Michael A. Hickner
- Department of Material Science
and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
Chang Y, Mohanty AD, Smedley SB, Abu-Hakmeh K, Lee YH, Morgan JE, Hickner MA, Jang SS, Ryu CY, Bae C. Effect of Superacidic Side Chain Structures on High Conductivity Aromatic Polymer Fuel Cell Membranes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01739] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Chang
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department
of Chemistry, University of Nevada Las Vegas, 4505 Maryland Parkway, Box 454003, Las Vegas, Nevada 89154-4003, United States
| | - Angela D. Mohanty
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Sarah B. Smedley
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Khaldoon Abu-Hakmeh
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Young Hun Lee
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Joel E. Morgan
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael A. Hickner
- Department
of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seung Soon Jang
- School
of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, Georgia 30332-0245, United States
| | - Chang Y. Ryu
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Chulsung Bae
- Department
of Chemistry and Chemical Biology, New York State Center for Polymer
Synthesis, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department
of Chemistry, University of Nevada Las Vegas, 4505 Maryland Parkway, Box 454003, Las Vegas, Nevada 89154-4003, United States
| |
Collapse
|
24
|
McCrum IT, Akhade SA, Janik MJ. Electrochemical specific adsorption of halides on Cu 111 , 100 , and 211 : A Density Functional Theory study. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Yang Y, Yang B, Peng J, Zhao Z, Zhao Y. Enhanced hydrogen evolution properties obtained by electrochemical modification of carbon-supported platinum–copper bimetallic nanocatalysts and structural characterization. RSC Adv 2015. [DOI: 10.1039/c4ra16060f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The three-dimensional surface with high specific surface area after being electrochemically modified tremendously enhances Pt–Cu/C hydrogen evolution properties.
Collapse
Affiliation(s)
- Yong Yang
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming
- PR China
| | - Bin Yang
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming
- PR China
| | - Jincai Peng
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming
- PR China
| | - Zhijing Zhao
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming
- PR China
| | - Yumeng Zhao
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming
- PR China
| |
Collapse
|
26
|
Qian Y, Ikeshoji T, Zhao YY, Otani M. Vibrational Dynamics of Sulfate Anion Adsorption on Pt(111) Surface: Ab Initio Molecular Dynamics Simulations. ChemElectroChem 2014. [DOI: 10.1002/celc.201402205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Cabello G, Leiva EPM, Gutiérrez C, Cuesta A. Non-covalent interactions at electrochemical interfaces: one model fits all? Phys Chem Chem Phys 2014; 16:14281-6. [PMID: 24914989 DOI: 10.1039/c3cp53354a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The shift with increasing concentration of alkali-metal cations of the potentials of both the spike and the hump observed in the cyclic voltammograms of Pt(111) electrodes in sulfuric acid solutions is shown to obey the simple model recently developed by us to explain the effect of non-covalent interactions at the electrical double layer. The results suggest that the model, originally developed to describe the effect of alkali-metal cations on the cyclic voltammogram of cyanide-modified Pt(111) electrodes, is of general applicability and can explain quantitatively the effect of cations on the properties of the electrical double layer.
Collapse
Affiliation(s)
- Gema Cabello
- Instituto de Química Física "Rocasolano", CSIC, C. Serrano 119, E-28006, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Baei MT, Hashemian S, Torabi P, Hosseini F. Remove of Sulphate Ion from Environmental Systems by using AlN Nanotubes. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.4.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Surface spectroscopy of Pt(1 1 1) single-crystal electrolyte interfaces with broadband sum-frequency generation. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Ward BM, Getman RB. Molecular simulations of physical and chemical adsorption under gas and liquid environments using force field- and quantum mechanics-based methods. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.829226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Mills JN, McCrum IT, Janik MJ. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys Chem Chem Phys 2014; 16:13699-707. [DOI: 10.1039/c4cp00760c] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Yeh KY, Janik MJ. Density Functional Theory Methods for Electrocatalysis. COMPUTATIONAL CATALYSIS 2013. [DOI: 10.1039/9781849734905-00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electrocatalysis involves catalytic reactions occurring in electrochemical systems, where bond breaking and forming on the catalyst surface are coupled with electron and ion transfer. Electrocatalytic reactions occur in fuel cells, with examples such as hydrogen oxidation, methanol oxidation, and oxygen reduction as well as in electrolysis cells, with examples such as hydrogen evolution, water splitting, and carbon dioxide reduction. Density functional theory (DFT) can be used in a similar manner to its application to non-electrochemical catalytic reactions however, additional complexities arise owing to the electrochemical nature of the catalytic interface. As in typical heterogeneous catalysis, the electrocatalyst is generally a supported nanoparticle, and all of the same challenges in developing appropriate and computationally tractable model systems (use of low-index plane surfaces or small particles as models, for example) apply to electrocatalytic systems.
Collapse
Affiliation(s)
- Kuan-Yu Yeh
- Pennsylvania State University, Department of Chemical Engineering University Park PA 16802
| | - Michael J. Janik
- Pennsylvania State University, Department of Chemical Engineering University Park PA 16802
| |
Collapse
|
33
|
Ribeiro T, Motta A, Marcus P, Gaigeot MP, Lopez X, Costa D. Formation of the OOH radical at steps of the boehmite surface and its inhibition by gallic acid: A theoretical study including DFT-based dynamics. J Inorg Biochem 2013; 128:164-73. [DOI: 10.1016/j.jinorgbio.2013.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 11/26/2022]
|
34
|
Pierozynski B. Electrochemical reactivity of urea at Pt(100) surface in 0.5 M H 2SO 4 by AC impedance spectroscopy. J Solid State Electrochem 2013; 17:889-893. [PMID: 23450192 PMCID: PMC3579810 DOI: 10.1007/s10008-012-1936-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
The present paper reports an alternate current impedance spectroscopic study on adsorption of urea (U) at Pt(100) single-crystal surface, examined in 0.5 M H2SO4 supporting electrolyte. The resulted information provided confirmation of the role of electrosorption of urea on the Pt(100) plane through evaluation of the associated charge transfer resistance and capacitance parameters. Obtained impedance results were compared to those previously recorded for guanidinium cation (G+) under analogous experimental conditions, especially with respect to the so-called ion pairing mechanism, as originally proposed for the G+ ion and bi(sulfate)/OH species, based on the voltammetric and in situ Fourier transform infrared spectroscopy results.
Collapse
Affiliation(s)
- Boguslaw Pierozynski
- Department of Chemistry, Faculty of Environmental Protection and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-957 Olsztyn, Poland
| |
Collapse
|
35
|
Shuai D, McCalman DC, Choe JK, Shapley JR, Schneider WF, Werth CJ. Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles. ACS Catal 2013. [DOI: 10.1021/cs300616d] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Danmeng Shuai
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - Dorrell C. McCalman
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - Jong Kwon Choe
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - John R. Shapley
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - William F. Schneider
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| | - Charles J. Werth
- Department
of Civil and Environmental Engineering, ‡Department of Chemistry, and §Center of Advanced
Materials for the Purification of Water with Systems, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, ∥Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556, United States
| |
Collapse
|
36
|
Comas-Vives A, Bandlow J, Jacob T. Ab initio study of the electrochemical H2SO4/Pt(111) interface. Phys Chem Chem Phys 2013; 15:992-7. [DOI: 10.1039/c2cp43054a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|