1
|
Bin Rashid A. Utilization of Nanotechnology and Nanomaterials in Biodiesel Production and Property Enhancement. JOURNAL OF NANOMATERIALS 2023; 2023:1-14. [DOI: 10.1155/2023/7054045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the applications of nanotechnology and nanomaterials are attracting interest in a wide variety of study domains because of their appealing qualities. The use of nanotechnology and nanomaterials in biodiesel processing and manufacturing is a focus of research globally. For accelerating the progress and development of biodiesel production, more focus is being given to the application of advanced nanotechnology for maximum yield in low cost. Hence, this paper will discuss the utilization of numerous nanomaterials/nanocatalysts for biodiesel synthesis from multiple feedstocks. This study will also focus on nanomaterials’ applications in algae cultivation and lipid extraction. Furthermore, the current study will comprehensively overview the nanoadditives blended biodiesel in diesel engines and the significant challenges and future opportunities. Moreover, this paper will also focus on human and environmental safety concerns of nanotechnology-based large-scale biodiesel production. Hence, this review will provide perception for future manufacturers, researchers, and academicians into the extent of research in nanotechnology and nanomaterials assisted biodiesel production and its efficiency enhancement.
Collapse
Affiliation(s)
- Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| |
Collapse
|
2
|
Panchal B, Hao Y, Han Z, Chang T, Zhu Z, Wang X, Qin S. Functionalized mesoporous polymer ionic liquids for efficient immobilization of lipase: effects of ethyl oleate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Boronat M, Climent MJ, Concepción P, Díaz U, García H, Iborra S, Leyva-Pérez A, Liu L, Martínez A, Martínez C, Moliner M, Pérez-Pariente J, Rey F, Sastre E, Serna P, Valencia S. A Career in Catalysis: Avelino Corma. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Boronat
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Maria J. Climent
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Sara Iborra
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Lichen Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Agustin Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Cristina Martínez
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Manuel Moliner
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Enrique Sastre
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Marie Curie 2, Madrid 28049, Spain
| | - Pedro Serna
- ExxonMobil Technology and Engineering Company, Catalysis Fundamentals, Annandale, New Jersey 08801, United States
| | - Susana Valencia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
4
|
Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv 2022; 57:107936. [PMID: 35276253 DOI: 10.1016/j.biotechadv.2022.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
Abstract
Microbial enzymes catalyze various reactions inside and outside living cells. Among the widely studied enzymes, fungal enzymes have been used for some of the most diverse purposes, especially in bioremediation, biosynthesis, and many nature-inspired commercial applications. To improve their stability and catalytic ability, fungal enzymes are often immobilized on assorted materials, conventional as well as nanoscale. Recent advances in fungal enzyme immobilization provide effective and sustainable approaches to achieve improved environmental and commercial outcomes. This review aims to provide a comprehensive overview of commonly studied fungal enzymes and immobilization technologies. It also summarizes recent advances involving immobilized fungal enzymes for the degradation or assembly of compounds used in the manufacture of products, such as detergents, food additives, and fossil fuel alternatives. Furthermore, challenges and future directions are highlighted to offer new perspectives on improving existing technologies and addressing unexplored fields of applications.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Kshitjia Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Ivy Kwok
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
5
|
Maroa S, Inambao F. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts. Eng Life Sci 2021; 21:790-824. [PMID: 34899118 PMCID: PMC8638282 DOI: 10.1002/elsc.202100025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022] Open
Abstract
The production of biodiesel through chemical production processes of transesterification reaction depends on suitable catalysts to hasten the chemical reactions. Therefore, the initial selection of catalysts is critical although it is also dependent on the quantity of free fatty acids in a given sample of oil. Earlier forms of biodiesel production processes relied on homogeneous catalysts, which have undesirable effects such as toxicity, high flammability, corrosion, by-products such as soap and glycerol, and high wastewater. Heterogeneous catalysts overcome most of these problems. Recent developments involve novel approaches using biomass and bio-waste resource derived heterogeneous catalysts. These catalysts are renewable, non-toxic, reusable, offer high catalytic activity and stability in both acidic and base conditions, and show high tolerance properties to water. This review work critically reviews biomass-based heterogeneous catalysts, especially those utilized in sustainable production of biofuel and biodiesel. This review examines the sustainability of these catalysts in literature in terms of small-scale laboratory and industrial applications in large-scale biodiesel and biofuel production. Furthermore, this work will critically review natural heterogeneous biomass waste and bio-waste catalysts in relation to upcoming nanotechnologies. Finally, this work will review the gaps identified in the literature for heterogeneous catalysts derived from biomass and other biocatalysts with a view to identifying future prospects for heterogeneous catalysts.
Collapse
Affiliation(s)
- Semakula Maroa
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Freddie Inambao
- College of Agriculture Science and EngineeringDiscipline of Mechanical EngineeringGreen Energy GroupUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
6
|
Cirujano FG, Dhakshinamoorthy A. Challenges and Opportunities for the Encapsulation of Enzymes over Porous Solids for Biodiesel Production and Cellulose Valorization into Glucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202100943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco G. Cirujano
- Institute of Molecular Science (ICMOL) Universidad de Valencia 46980 Paterna Valencia Spain
| | | |
Collapse
|
7
|
Cipolatti EP, Rios NS, Sousa JS, Robert JDM, da Silva AAT, Pinto MC, Simas ABC, Vilarrasa-García E, Fernandez-Lafuente R, Gonçalves LRB, Freire DMG, Manoel EA. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zamora A, Moris M, Silva R, Deschaume O, Bartic C, Parac-Vogt TN, Verbiest T. Visualization and characterization of metallo-aggregates using multi-photon microscopy. RSC Adv 2021; 11:657-661. [PMID: 35423665 PMCID: PMC8693374 DOI: 10.1039/d0ra07263j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022] Open
Abstract
A simple and cost-effective method based on multi-photon microscopy is presented for the preliminary screening of the general morphology, size range and heterogeneity of Ir(iii) nano-aggregate formulations. Multi-photon microscopy can be an excellent complementary technique for the characterization of nano-aggregates containing metallic photosensitizers with multi-photon emission properties.![]()
Collapse
Affiliation(s)
- Ana Zamora
- Molecular Imaging and Photonics
- KU Leuven
- Belgium
| | | | - Rui Silva
- Molecular Imaging and Photonics
- KU Leuven
- Belgium
- Engineering Faculty of Oporto University
- Portugal (FEUP)
| | | | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics
- KU Leuven
- Belgium
| | | | | |
Collapse
|
9
|
Biodiesel synthesis from palm fatty acid distillate using enzyme immobilized on magnetic nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03338-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13113013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.
Collapse
|
12
|
Zhong L, Feng Y, Wang G, Wang Z, Bilal M, Lv H, Jia S, Cui J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int J Biol Macromol 2020; 152:207-222. [PMID: 32109471 DOI: 10.1016/j.ijbiomac.2020.02.258] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/19/2023]
Abstract
As a highly efficient and environmentally friendly biocatalyst, immobilized lipase has received incredible interest among the biotechnology community for the production of biodiesel. Nanomaterials possess high enzyme loading, low mass transfer limitation, and good dispersibility, making them suitable biocatalytic supports for biodiesel production. In addition to traditional nanomaterials such as nano‑silicon, magnetic nanoparticles and nano metal particles, novel nanostructured forms such as nanoflowers, carbon nanotubes, nanofibers and metal-organic frameworks (MOFs) have also been studied for biodiesel production in the recent years. However, some problems still exist that need to be overcome in achieving large-scale biodiesel production using immobilized lipase on/in nanomaterials. This article mainly presents an overview of the current and state-of-the-art research on biodiesel production by immobilized lipases in/on nanomaterials. Various immobilization strategies of lipase on various advanced nanomaterial supports and its applications in biodiesel production are highlighted. Influential factors such as source of lipase, immobilization methods, feedstocks, and production process are also critically discussed. Finally, the current challenges and future directions in developing immobilized lipase-based biocatalytic systems for high-level production of biodiesel from waste resources are also recommended.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Gaoyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hexin Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| |
Collapse
|
13
|
Abstract
In this study, the evaluation of the catalytic behavior of several wild bacterial strains in the 1,3-selective ethanolysis of triglycerides with ethanol to produce a new type of biodiesel (Ecodiesel) that integrates glycerol as monoacylglycerols was carried out. The Ecodiesel production not only avoids the elimination of glycerol, which is largely generated as a by-product in the biodiesel industry, but also results in an increase in the biofuel yield. The wild microbial strain samples were obtained from several lipophilic organisms. In addition to evaluate the enzymatic extracts, the minimum grade of purification of the strains, necessary to obtain similar results to those attained with commercial lipases was studied. This purification treatment included a dialysis followed by a lyophilization process. Such extracts were directly used as biocatalysts in the transesterification reaction of sunflower oil with ethanol, attaining much better results (yield close to 100%) than those obtained with strains which were not submitted to the purification process (yields lower than 10%). Furthermore, the results here obtained are similar to those obtained with commercial lipases but were achieved under mild conditions and lower reaction time (2 h). In addition, the stability of the enzymatic extracts was corroborated by subsequent reactions, showing no loss of activity. Thus, this study brings to light that enzymatic extracts obtained by a very simple purification process can be economically competitive with the conventional biodiesel production methods.
Collapse
|
14
|
Giuffrè AM, Capocasale M, Zappia C, Poiana M. Influence of High Temperature and Duration of Heating on the Sunflower Seed Oil Properties for Food Use and Bio-diesel Production. J Oleo Sci 2018; 66:1193-1205. [PMID: 29093378 DOI: 10.5650/jos.ess17109] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two important problems for the food industry are oil oxidation and oil waste after frying. Sunflower seed oil is one of the vegetable oils most commonly used in the food industry. Two variables were applied to the low oleic sunflower seed oil in this work i.e. heating temperature (180-210-240°C) and time of heating (15-30-60-120 minutes), to study from the edible point of view the variations of its physico-chemical properties. After 120 minutes heating at 240°C the following was found: refractive index (1.476), free acidity (0.35%), K232 (2.87), K270 (3.71), antiradical activity (45.90% inhibition), total phenols (523 mg kg-1), peroxide value (17.00 meq kg-1), p-anisidine value (256.8) and Totox (271.7), all of which showed a constant deterioration. In relation to the use as a feedstock for bio-diesel production, after 120 minutes heating at 240℃ the following was found: acid value 0.70 mg KOH g-1 oil, iodine value 117.83 g I2 100 g-1 oil, oil stability index 0.67 h, kinematic viscosity (at 40°C) 77.85 mm2 s-1, higher heating value 39.86 MJ kg-1, density 933.34 kg/m3 and cetane number 67.04. The parameters studied in this work were influenced, in different ways, by the applied variables. Heating temperature between 180 and 210°C and 120 min heating duration were found to be the most appropriate conditions for sunflower seed oil both from the deep frying point of view and from a subsequent use as feedstock for bio-diesel production. In light of the vegetable oils' International standards for an edible use and for a bio-diesel production, findings of this work can be used to set heating temperature and heating duration to preserve as long possible the physico-chemical properties of a low oleic sunflower seed oil for both its edible use as a fat during cooking and for its re-use after frying.
Collapse
Affiliation(s)
| | - Marco Capocasale
- Dipartimento di AGRARIA. Università degli Studi Mediterranea di Reggio Calabria
| | - Clotilde Zappia
- Dipartimento di AGRARIA. Università degli Studi Mediterranea di Reggio Calabria
| | - Marco Poiana
- Dipartimento di AGRARIA. Università degli Studi Mediterranea di Reggio Calabria
| |
Collapse
|
15
|
Catizzone E, Bonura G, Migliori M, Frusteri F, Giordano G. CO₂ Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules 2017; 23:E31. [PMID: 29295541 PMCID: PMC5943932 DOI: 10.3390/molecules23010031] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/02/2022] Open
Abstract
This review reports recent achievements in dimethyl ether (DME) synthesis via CO₂ hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO₂ appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO₂ are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO₂-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase-responsible for CO₂ activation/hydrogenation-but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, …) influencing activity and stability of hybridized bifunctional heterogeneous catalysts. All these aspects are discussed in details, summarizing recent achievements in this research field.
Collapse
Affiliation(s)
- Enrico Catizzone
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppe Bonura
- CNR-ITAE "Nicola Giordano", Via S. Lucia Sopra Contesse 5, 98126 Messina, Italy.
| | - Massimo Migliori
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Francesco Frusteri
- CNR-ITAE "Nicola Giordano", Via S. Lucia Sopra Contesse 5, 98126 Messina, Italy.
| | - Girolamo Giordano
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
16
|
Rai M, Ingle AP, Gaikwad S, Dussán KJ, da Silva SS. Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. NANOTECHNOLOGY FOR BIOENERGY AND BIOFUEL PRODUCTION 2017. [DOI: 10.1007/978-3-319-45459-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Giuffrè AM, Tellah S, Capocasale M, Zappia C, Latati M, Badiani M, Ounane SM. Seed Oil from Ten Algerian Peanut Landraces for Edible Use and Biodiesel Production. J Oleo Sci 2016; 65:9-20. [PMID: 26743667 DOI: 10.5650/jos.ess15199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a result of a recent ad hoc prospection of the Algerian territory, a collection of peanut (groundnut; Arachis hypogaea L.) landraces was established, covering a remarkable array of diversity in terms of morphological and physiological features, as well as of adaptation to local bioclimatic conditions. In the present work, the oils extracted from the seeds of these landraces were evaluated in terms of edible properties and suitability for biodiesel production. As for edible use, a low free acidity (ranging from 0.62 to 1.21%) and a high oleic acid content (44.61-50.94%) were common features, although a poor stability to oxidation [high peroxide values, high spectrophotometric indices, and low % of inhibition in the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH)· test] was observed in a few cases. As for biodiesel production, low values of acidity [1.23-2.40 mg KOH (g oil)(-1)], low iodine values [90.70-101.54 g I2 (g oil)(-1)], high cetane numbers (56.95-58.88) and high calorific values (higher heating value 37.34-39.27 MJ kg(-1)) were measured. Edible properties and suitability for biodiesel production were discussed with respect to the German standard DIN 51605 for rapeseed oil and to the EN 14214 standard, respectively. One way ANOVA and Hierarchical Cluster Analysis showed significant differences among the oils from the Algerian peanut landraces.
Collapse
|
18
|
Brandelli A, Brum LFW, dos Santos JHZ. Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-39306-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
|
20
|
Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Adv 2016. [DOI: 10.1039/c6ra22047a] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advantages, drawbacks and trends in nanomaterials for enzyme immobilization.
Collapse
Affiliation(s)
- Eliane P. Cipolatti
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
- Biochemistry Department
| | - Alexsandra Valério
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Rosana O. Henriques
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise E. Moritz
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Jorge L. Ninow
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| | - Denise M. G. Freire
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | - Evelin A. Manoel
- Biochemistry Department
- Chemistry Institute
- Federal University of Rio de Janeiro
- 21949-909 Rio de Janeiro
- Brazil
| | | | - Débora de Oliveira
- Chemical and Food Engineering Department
- Federal University of Santa Catarina (UFSC)
- Florianópolis
- Brazil
| |
Collapse
|
21
|
Valério A, Nicoletti G, Cipolatti EP, Ninow JL, Araújo PHH, Sayer C, de Oliveira D. Kinetic Study of Candida antarctica Lipase B Immobilization Using Poly(Methyl Methacrylate) Nanoparticles Obtained by Miniemulsion Polymerization as Support. Appl Biochem Biotechnol 2015; 175:2961-71. [DOI: 10.1007/s12010-015-1478-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/01/2015] [Indexed: 11/28/2022]
|
22
|
Cipolatti EP, Valério A, Nicoletti G, Theilacker E, Araújo PH, Sayer C, Ninow JL, de Oliveira D. Immobilization of Candida antarctica lipase B on PEGylated poly(urea-urethane) nanoparticles by step miniemulsion polymerization. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Verma ML, Puri M, Barrow CJ. Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 2014; 36:108-19. [DOI: 10.3109/07388551.2014.928811] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
A Biofuel Similar to Biodiesel Obtained by Using a Lipase from Rhizopus oryzae, Optimized by Response Surface Methodology. ENERGIES 2014. [DOI: 10.3390/en7053383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D. Current status and trends in enzymatic nanoimmobilization. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.10.019] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Biofuel that Keeps Glycerol as Monoglyceride by 1,3-Selective Ethanolysis with Pig Pancreatic Lipase Covalently Immobilized on AlPO4 Support. ENERGIES 2013. [DOI: 10.3390/en6083879] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica. ENERGIES 2013. [DOI: 10.3390/en6042052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Díaz U, Brunel D, Corma A. Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev 2013; 42:4083-97. [DOI: 10.1039/c2cs35385g] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|