1
|
Xiong L, Yu Z, Cao H, Guan W, Su Y, Pan X, Zhang L, Liu X, Wang A, Tang J. Converting Glycerol into Valuable Trioses by Cu δ+ -Single-Atom-Decorated WO 3 under Visible Light. Angew Chem Int Ed Engl 2024; 63:e202318461. [PMID: 38302835 DOI: 10.1002/anie.202318461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.
Collapse
Affiliation(s)
- Lunqiao Xiong
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Zhounan Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongchen Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weixiang Guan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoli Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Leilei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Aiqin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Pulignani C, Mesa CA, Hillman SAJ, Uekert T, Giménez S, Durrant JR, Reisner E. Rational Design of Carbon Nitride Photoelectrodes with High Activity Toward Organic Oxidations. Angew Chem Int Ed Engl 2022; 61:e202211587. [PMID: 36224107 PMCID: PMC10099510 DOI: 10.1002/anie.202211587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Carbon nitride (CNx ) is a light-absorber with excellent performance in photocatalytic suspension systems, but the activity of CNx photoelectrodes has remained low. Here, cyanamide-functionalized CNx (NCN CNx ) was co-deposited with ITO nanoparticles on a 1.8 Å thick alumina-coated FTO electrode. Transient absorption spectroscopy and impedance measurements support that ITO acts as a conductive binder and improves electron extraction from the NCN CNx , whilst the alumina underlayer reduces recombination losses between the ITO and the FTO glass. The Al2 O3 |ITO : NCN CNx film displays a benchmark performance for CNx -based photoanodes with an onset of -0.4 V vs a reversible hydrogen electrode (RHE), and 1.4±0.2 mA cm-2 at 1.23 V vs RHE during AM1.5G irradiation for the selective oxidation of 4-methylbenzyl alcohol. This assembly strategy will improve the exploration of CNx in fundamental and applied photoelectrochemical (PEC) studies.
Collapse
Affiliation(s)
- Carolina Pulignani
- Yusuf Hamied Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Camilo A. Mesa
- Institute of Advanced Materials (INAM) Universitat Jaume I (UJI) 12006 Castelló de la Plana, Castellón Spain
| | - Sam A. J. Hillman
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK
| | - Taylor Uekert
- Yusuf Hamied Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I (UJI) 12006 Castelló de la Plana, Castellón Spain
| | - James R. Durrant
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Liu M, Liu H, Li N, Zhang C, Zhang J, Wang F. Selective Oxidation of Glycerol into Formic Acid by Photogenerated Holes and Superoxide Radicals. CHEMSUSCHEM 2022; 15:e202201068. [PMID: 35916074 DOI: 10.1002/cssc.202201068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis is a promising technology for conversion of the glycerol into formic acid, but photocatalytic oxidation of C-C bonds in glycerol exhibits poor selectivity towards formic acid because the photogenerated radicals (e.g., hydroxyl radicals) further oxidize formic acid to CO2 . In this work, a synergy of photogenerated holes and superoxide radicals that achieved the selective oxidation of glycerol into formic acid over the TiO2 catalyst was revealed. The charge separation of pristine TiO2 was improved with the aid of oxygen, which resulted in efficient hole oxidation of the C-C bonds in glycerol to formic acid. Surface active species were controlled to prevent being converted to hydroxyl radicals on TiO2 by controlling the oxygen and water contents, which solved the problem of formic acid peroxidation without sophisticated catalyst modifications. Mechanism studies suggested that glyceraldehyde and glycolaldehyde were the intermediates to generate formic acid. This work provides a green and efficient approach to produce formic acid as a liquid hydrogen carrier from bio-based alcohols.
Collapse
Affiliation(s)
- Meijiang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Ning Li
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Chaofeng Zhang
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forest University, Panlong Road 159, Nanjing, 210037, P. R. China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
4
|
Influence of sacrificial agent on Cu photodeposition over TiO2/MCH composites for photocatalytic hydrogen production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Esrafili A, Salimi M, jonidi jafari A, Reza Sobhi H, Gholami M, Rezaei Kalantary R. Pt-based TiO2 photocatalytic systems: A systematic review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
|
7
|
Photocatalytic H2 Production on Au/TiO2: Effect of Au Photodeposition on Different TiO2 Crystalline Phases. J 2022. [DOI: 10.3390/j5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we investigated the role of the crystalline phases of titanium dioxide in the solar photocatalytic H2 production by the reforming of glycerol, focusing the attention on the influence of photodeposited gold, as a metal co-catalyst, on TiO2 surface. We correlated the photocatalytic activity of 1 wt% Au/TiO2 in anatase, rutile, and brookite phases with the structural and optical properties determined by Raman spectroscopy, N2 adsorption–desorption measurements, UV–vis Diffuse Reflectance Spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), Photoluminescence spectroscopy (PL), and Dynamic Light scattering (DLS). The best results (2.55 mmol H2 gcat−1 h−1) were obtained with anatase and gold photodeposited after 30 min of solar irradiation. The good performance of Au/TiO2 in anatase form and the key importance of the strong interaction between gold and the peculiar crystalline phase of TiO2 can be a starting point to efficiently improve photocatalysts design and experimental conditions, in order to favor a green hydrogen production through solar photocatalysis.
Collapse
|
8
|
Synthesis and Performance of Photocatalysts for Photocatalytic Hydrogen Production: Future Perspectives. Catalysts 2021. [DOI: 10.3390/catal11121505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Photocatalysis for “green” hydrogen production is a technology of increasing importance that has been studied using both TiO2–based and heterojunction composite-based semiconductors. Different irradiation sources and reactor units can be considered for the enhancement of photocatalysis. Current approaches also consider the use of electron/hole scavengers, organic species, such as ethanol, that are “available” in agricultural waste, in communities around the world. Alternatively, organic pollutants present in wastewaters can be used as organic scavengers, reducing health and environmental concerns for plants, animals, and humans. Thus, photocatalysis may help reduce the carbon footprint of energy production by generating H2, a friendly energy carrier, and by minimizing water contamination. This review discusses the most up-to-date and important information on photocatalysis for hydrogen production, providing a critical evaluation of: (1) The synthesis and characterization of semiconductor materials; (2) The design of photocatalytic reactors; (3) The reaction engineering of photocatalysis; (4) Photocatalysis energy efficiencies; and (5) The future opportunities for photocatalysis using artificial intelligence. Overall, this review describes the state-of-the-art of TiO2–based and heterojunction composite-based semiconductors that produce H2 from aqueous systems, demonstrating the viability of photocatalysis for “green” hydrogen production.
Collapse
|
9
|
|
10
|
Ćwieka K, Czelej K, Colmenares JC, Jabłczyńska K, Werner Ł, Gradoń L. Supported Plasmonic Nanocatalysts for Hydrogen Production by Wet and Dry Photoreforming of Biomass and Biogas Derived Compounds: Recent Progress and Future Perspectives. ChemCatChem 2021. [DOI: 10.1002/cctc.202101006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karol Ćwieka
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
- Faculty of Materials Science and Engineering Warsaw University of Technology Woloska 141 02507 Warsaw Poland
| | - Kamil Czelej
- Department of Complex System Modeling Institute of Theoretical Physics Faculty of Physics University of Warsaw Pasteura 5 02093 Warszawa Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01224 Warsaw Poland
| | - Katarzyna Jabłczyńska
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| | - Łukasz Werner
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| | - Leon Gradoń
- Faculty of Chemical and Process Engineering Warsaw University of Technology L. Warynskiego 1 00645 Warsaw Poland
| |
Collapse
|
11
|
Chandrappa S, Murthy DHK, Reddy NL, Babu SJ, Rangappa D, Bhargav U, Preethi V, Mamatha Kumari M, Shankar MV. Utilizing 2D materials to enhance H 2 generation efficiency via photocatalytic reforming industrial and solid waste. ENVIRONMENTAL RESEARCH 2021; 200:111239. [PMID: 33992636 DOI: 10.1016/j.envres.2021.111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Sustainable valorization of industrial and solid wastes by utilizing them as feedstock to generate H2 via the photocatalytic reforming (PR) process holds great promise. It can also be an effective method to treat solid waste that otherwise would require tedious and expensive processes. This approach has the potential to offer energy solutions and form value-added chemicals. In this direction, developing photocatalysts and tuning their properties play an essential role in advancing the H2 generation efficiency. This Review article explores the application of 2D photocatalysts to generate H2 via PR of industrial waste (H2S) and solid waste, such as plastic and biomass. Despite having favorable optoelectronic properties, 2D photocatalysts are not widely employed for the PR process. The latest progress in employing 2D photocatalysts to realize efficient H2 evolution from biomass, plastic, and industrial waste such as H2S is detailed in this Review. A correlation between the properties of 2D photocatalysts with H2 evolution rate is discussed. We also emphasize understanding the mechanism involved in the PR process and the importance of 2D photocatalysts design. Such rational insight aids in further enhancing the H2 generation efficiency by effectively using solid/industrial waste as a feedstock.
Collapse
Affiliation(s)
- Sujana Chandrappa
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research, Bidalur, Devanahalli, 562164, Karnataka, India.
| | - Dharmapura H K Murthy
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific Research, Bidalur, Devanahalli, 562164, Karnataka, India.
| | - Nagappagari Lakshmana Reddy
- Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, College of Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - S Jagadeesh Babu
- Visvesvaraya Center for Nano Science and Technology, Visvesvaraya Technological University, Muddenahalli, Chikkaballapura, 562103, Karnataka, India.
| | - Dinesh Rangappa
- Visvesvaraya Center for Nano Science and Technology, Visvesvaraya Technological University, Muddenahalli, Chikkaballapura, 562103, Karnataka, India.
| | - Urupalli Bhargav
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Vijayarengan Preethi
- Renewable Energy Laboratory, Department of Civil Engineering, Hindustan Institute of Technology and Science, Padur, Chennai, Tamilnadu, 603103, India.
| | - Murikinati Mamatha Kumari
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Muthukonda Venkatakrishnan Shankar
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| |
Collapse
|
12
|
Sustainable Hydrogen Production from Starch Aqueous Suspensions over a Cd0.7Zn0.3S-Based Photocatalyst. Catalysts 2021. [DOI: 10.3390/catal11070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We explored the photoreforming of rice and corn starch with simultaneous hydrogen production over a Cd0.7Zn0.3S-based photocatalyst under visible light irradiation. The photocatalyst was characterized by UV–vis diffuse reflectance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The influence of starch pretreatment conditions, such as hydrolysis temperature and alkaline concentration, on the reaction rate was studied. The maximum rate of H2 evolution was 730 μmol·h−1·g−1, with AQE = 1.8% at 450 nm, in the solution obtained after starch hydrolysis in 5 M NaOH at 70 °C. The composition of the aqueous phase of the suspension before and after the photocatalytic reaction was studied via high-performance liquid chromatography, and such products as glucose and sodium gluconate, acetate, formate, glycolate, and lactate were found after the photocatalytic reaction.
Collapse
|
13
|
Davis KA, Yoo S, Shuler EW, Sherman BD, Lee S, Leem G. Photocatalytic hydrogen evolution from biomass conversion. NANO CONVERGENCE 2021; 8:6. [PMID: 33635439 PMCID: PMC7910387 DOI: 10.1186/s40580-021-00256-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient, sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol, glycerol, formic acid, glucose, and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efficiency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material, as the development of such will incur greater benefits towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Collapse
Affiliation(s)
- Kayla Alicia Davis
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Sunghoon Yoo
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi-do, 13306, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eric W Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Photocatalytic H2 Production from Naphthalene by Various TiO2 Photocatalysts: Impact of Pt Loading and Formation of Intermediates. Catalysts 2021. [DOI: 10.3390/catal11010107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This work presents a comparative study of the efficiency of two commercial TiO2 photocatalysts, Aeroxide P25 (ATiO2) and Sachtleben Hombikat UV100 (HTiO2), in H2 production from an aqueous solution of naphthalene. The TiO2 photocatalysts were platinized by the photodeposition method varying the platinum content of the suspension to 0.5, 1.0, and 5.0 wt%. A full physicochemical characterization for these materials was performed, showing no structural effects from the deposition method, and confirming a well dispersion of nanosized-Pt0 particles on the surface of both photocatalysts. Pristine ATiO2 shows around 14% higher photocatalytic fractional conversion of naphthalene than pristine HTiO2 after 240 min of irradiation, while both materials exhibit negligible activity for H2 formation. The 0.5 wt% Pt- HTiO2 increases the photocatalytic fractional conversion of naphthalene from 71% to 82% and produces 6 µmol of H2. However, using a higher Pt content than the optimal platinization ratio of 0.5 wt% dramatically inhibits both processes. On the other hand, regardless of the fractional ratio of Pt, the platinization of ATiO2 results in a decrease in the fractional conversion of naphthalene by 4% to 33% of the pristine value. Although the presence of Pt islands on the surface of the ATiO2 is essential for the H2 evolution, no dependency between the Pt ratio and the H2 formation rate was observed since all the platinized materials show a similar H2 formation of around 3 µmol. Based on the EPR results, the higher photocatalytic activity of the Pt-HTiO2 is attributed to the efficient charge carrier separation and its larger surface area. The recyclability test confirms that the inhibition of the photocatalytic process is related to the deactivation of the photocatalyst surface by the adsorption of the photoformed intermediates. A strong relationship between the photocatalytic activity and the kind of the aromatic compounds was observed. The H2 evolution and the photooxidation of the aromatic hydrocarbons exhibit higher photonic efficiencies than that of their corresponding hydroxylated compounds over the Pt-HTiO2.
Collapse
|
15
|
Karimi Estahbanati MR, Feilizadeh M, Attar F, Iliuta MC. Current developments and future trends in photocatalytic glycerol valorization: process analysis. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00382d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Challenges and opportunities in photocatalytic glycerol valorization to hydrogen and value-added liquid products: process analysis and parametric study.
Collapse
Affiliation(s)
| | | | - Farid Attar
- School of Chemical and Petroleum Engineering
- Shiraz University
- Shiraz
- Iran
| | - Maria C. Iliuta
- Department of Chemical Engineering
- Université Laval
- Québec
- Canada
| |
Collapse
|
16
|
Karimi Estahbanati MR, Feilizadeh M, Attar F, Iliuta MC. Current Developments and Future Trends in Photocatalytic Glycerol Valorization: Photocatalyst Development. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M. R. Karimi Estahbanati
- Department of Chemical Engineering, Université Laval, Québec, 1065 Av. De la Médecine,Québec G1 V 0A6, Canada
| | - Mehrzad Feilizadeh
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Farid Attar
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Maria C. Iliuta
- Department of Chemical Engineering, Université Laval, Québec, 1065 Av. De la Médecine,Québec G1 V 0A6, Canada
| |
Collapse
|
17
|
Montoya-Bautista CV, Acevedo-Peña P, Zanella R, Ramírez-Zamora RM. Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Top Catal 2020. [DOI: 10.1007/s11244-020-01362-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
|
19
|
Sola AC, Ramírez de la Piscina P, Homs N. Behaviour of Pt/TiO2 catalysts with different morphological and structural characteristics in the photocatalytic conversion of ethanol aqueous solutions. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Wahab AK, Nadeem MA, Idriss H. Hydrogen Production During Ethylene Glycol Photoreactions Over Ag-Pd/TiO 2 at Different Partial Pressures of Oxygen. Front Chem 2019; 7:780. [PMID: 31824920 PMCID: PMC6883913 DOI: 10.3389/fchem.2019.00780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
The reaction of ethylene glycol has been studied over Ag-Pd/TiO2 (anatase) under photo-irradiation while monitoring the reaction products (in the gas and liquid phases) as a function of time and at different partial pressures of molecular oxygen. The catalyst contained metal particles with a mean size of about 1 nm, most likely in the form of alloy (TEM, STEM, and XPS). The complex reaction network involves hydrogen abstraction, C-C bond dissociation, de-carbonylation and water gas shift ultimately yielding hydrogen and CO2. The two main competing reactions were found to be, photo reforming and photo-oxidation. Based on our previous study, Ag presence improves the reaction rate for hydrogen production, most likely via decreasing the adsorption energy of CO when compared to pure Pd. At high ethylene glycol concentrations, the rate of hydrogen produced decreased by a factor of two while changing O2 partial pressure from 0.001 to 0.2 atm. The rate was however very sensitive to oxygen partial pressures at low ethylene glycol concentrations, decreasing by about 50 times with increasing oxygen pressures to 1 atm. The order of reaction with respect to O2 changed from near zero at high oxygen partial pressure to ½ at low partial pressure (in 0.008-0.2 atm. range). Liquid phase analysis indicated that the main reaction product was formaldehyde, where its concentration was found to be higher than that of H2 and CO2. The mass balance approached near unity only upon the incorporation of formaldehyde and after a prolonged reaction time. This suggests that the photo-reforming reaction was not complete even at prolonged time, most likely due to kinetic limitations.
Collapse
Affiliation(s)
- Ahmed Khaja Wahab
- Hydrogen Platform, Catalysis Department, SABIC Corporate Research and Development (CRD), King Abdullah University for Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohammad Amtiaz Nadeem
- Hydrogen Platform, Catalysis Department, SABIC Corporate Research and Development (CRD), King Abdullah University for Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hicham Idriss
- Hydrogen Platform, Catalysis Department, SABIC Corporate Research and Development (CRD), King Abdullah University for Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Comparative photocatalytic behavior of photocatalysts (TiO2, SiC, Bi2O3, ZnO) for transformation of glycerol to value added compounds. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Karimi Estahbanati MR, Feilizadeh M, Iliuta MC. An intrinsic kinetic model for liquid‐phase photocatalytic hydrogen production. AIChE J 2019. [DOI: 10.1002/aic.16724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Mehrzad Feilizadeh
- School of Chemical and Petroleum Engineering Shiraz University Shiraz Iran
| | - Maria C. Iliuta
- Department of Chemical Engineering Université Laval Québec Québec Canada
| |
Collapse
|
23
|
Durán-Pérez JF, García-Martínez JC, Medina-Mendoza AK, Puebla-Núñez H, González-Brambila MM, Colín-Luna JA. A Kinetic Model of Photocatalytic Hydrogen Production Employing a Hole Scavenger. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- José F. Durán-Pérez
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de EnergíaÁrea de Análisis de Procesos Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| | - Julio C. García-Martínez
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de EnergíaÁrea de Análisis de Procesos Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| | - Ana K. Medina-Mendoza
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de Ciencias Básicas Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| | - Héctor Puebla-Núñez
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de EnergíaÁrea de Análisis de Procesos Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| | - Margarita M. González-Brambila
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de EnergíaÁrea de Análisis de Procesos Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| | - Jose Antonio Colín-Luna
- Universidad Autónoma Metropolitana AzcapotzalcoDepartamento de EnergíaÁrea de Análisis de Procesos Av. San Pablo 180, Col. Reynosa CP. 02200 México, D. F, CDMX Mexico
| |
Collapse
|
24
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
25
|
Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0604-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Dodekatos G, Schünemann S, Tüysüz H. Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01317] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Georgios Dodekatos
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Stefan Schünemann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Jedsukontorn T, Saito N, Hunsom M. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO₂ Photocatalysts. NANOMATERIALS 2018; 8:nano8040269. [PMID: 29690645 PMCID: PMC5923599 DOI: 10.3390/nano8040269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 01/23/2023]
Abstract
In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time.
Collapse
Affiliation(s)
- Trin Jedsukontorn
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nagahiro Saito
- Graduate School of Engineering & Green Mobility Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan.
| | - Mali Hunsom
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETRO-MAT), Chulalongkorn University, Bangkok 10330, Thailand.
- Associate Fellow of Royal Society of Thailand (AFRST), Sanam Suea Pa, Dusit, Bangkok 10300, Thailand.
| |
Collapse
|
28
|
Kontos S, Katrivesis F, Constantinou T, Zoga C, Ioannou I, Koutsoukos P, Paraskeva C. Implementation of membrane filtration and melt crystallization for the effective treatment and valorization of olive mill wastewaters. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
One-pot photo-synthesis and in-situ generation of hydrogen by silver/strontium titanate photocatalyst under visible or near-UV light and role of midgap states: Experiment and DFT computations. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Christoforidis KC, Fornasiero P. Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem 2017. [DOI: 10.1002/cctc.201601659] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Konstantinos C. Christoforidis
- Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR and INSTMUniversity of Trieste viaL.Giorgieri 1 34127 Trieste Italy
- Department of Chemical EngineeringImperial College London South Kensington Campus London SW7 2AZ UK
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR and INSTMUniversity of Trieste viaL.Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
32
|
Clarizia L, Somma ID, Onotri L, Andreozzi R, Marotta R. Kinetic modeling of hydrogen generation over nano-Cu (s) /TiO 2 catalyst through photoreforming of alcohols. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.05.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ryu J, Kim W, Kim J, Ju J, Kim J. Is surface fluorination of TiO2 effective for water purification? The degradation vs. mineralization of phenolic pollutants. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Taylor S, Mehta M, Barbash D, Samokhvalov A. One-pot photoassisted synthesis, in situ photocatalytic testing for hydrogen generation and the mechanism of binary nitrogen and copper promoted titanium dioxide. Photochem Photobiol Sci 2017; 16:916-924. [DOI: 10.1039/c6pp00477f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot photosynthesis and in situ testing of binary codoped Cu(0)–N-TiO2 yields hydrogen rate 675 μmol g−1 h−1; photoluminescence shows mechanism by excitation of N substitutional site.
Collapse
Affiliation(s)
- Sean Taylor
- Chemistry Department
- Rutgers University
- Camden
- USA
| | - Mihir Mehta
- Chemistry Department
- Rutgers University
- Camden
- USA
| | | | | |
Collapse
|
35
|
Sanwald KE, Berto TF, Eisenreich W, Gutiérrez OY, Lercher JA. Catalytic routes and oxidation mechanisms in photoreforming of polyols. J Catal 2016. [DOI: 10.1016/j.jcat.2016.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Jedsukontorn T, Meeyoo V, Saito N, Hunsom M. Effect of electron acceptors H2O2 and O2 on the generated reactive oxygen species 1O2 and OH in TiO2-catalyzed photocatalytic oxidation of glycerol. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62519-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Soares RR, Martins DF, Pereira DE, Almeida MB, Lam YL. On the gas-phase reforming of glycerol by Pt on carbon black: Effects of metal particle size and pH value of the glycerol stream. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2015.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Li D, Li X, Gong J. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chem Rev 2016; 116:11529-11653. [PMID: 27527927 DOI: 10.1021/acs.chemrev.6b00099] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.
Collapse
Affiliation(s)
- Di Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Xinyu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| |
Collapse
|
39
|
Berto TF, Sanwald KE, Eisenreich W, Gutiérrez OY, Lercher JA. Photoreforming of ethylene glycol over Rh/TiO2 and Rh/GaN:ZnO. J Catal 2016. [DOI: 10.1016/j.jcat.2016.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
|
41
|
Sakurai H, Kiuchi M, Heck C, Jin T. Hydrogen evolution from glycerol aqueous solution under aerobic conditions over Pt/TiO2and Au/TiO2granular photocatalysts. Chem Commun (Camb) 2016; 52:13612-13615. [DOI: 10.1039/c6cc08319f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen was efficiently evolved from glycerol aqueous solution upon vertical photoirradiation of a Pt/TiO2or Au/TiO2bed under aerobic conditions.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| | - Masato Kiuchi
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| | - Claire Heck
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| | - Tetsuro Jin
- National Institute of Advanced Industrial Science and Technology (AIST)
- Osaka 563-8577
- Japan
| |
Collapse
|
42
|
López CR, Melián EP, Ortega Méndez J, Santiago DE, Doña Rodríguez J, González Díaz O. Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.07.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Ng KH, Cheng CK. A novel photomineralization of POME over UV-responsive TiO2photocatalyst: kinetics of POME degradation and gaseous product formations. RSC Adv 2015. [DOI: 10.1039/c5ra06922j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Figures (a) settling pond from where the POME was collected, (b) filtered POME was ready for UV-irradiation and (c) POME after 20 h of photocatalytic reaction became clear after the solid TiO2was removed.
Collapse
Affiliation(s)
- Kim Hoong Ng
- Faculty of Chemical & Natural Resources Engineering
- Universiti Malaysia Pahang
- 26300 Gambang Kuantan
- Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical & Natural Resources Engineering
- Universiti Malaysia Pahang
- 26300 Gambang Kuantan
- Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow
| |
Collapse
|
44
|
Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chem Rev 2014; 114:9987-10043. [DOI: 10.1021/cr500008u] [Citation(s) in RCA: 1845] [Impact Index Per Article: 184.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Ma
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457
Zhongshan Road, Dalian 116023, China
| | - Xiuli Wang
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457
Zhongshan Road, Dalian 116023, China
| | - Yushuai Jia
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457
Zhongshan Road, Dalian 116023, China
| | - Xiaobo Chen
- Department
of Chemistry, College of Arts and Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Hongxian Han
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457
Zhongshan Road, Dalian 116023, China
| | - Can Li
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Dalian National Laboratory for Clean Energy, 457
Zhongshan Road, Dalian 116023, China
| |
Collapse
|
45
|
Liu X, Xu H, Grabstanowicz LR, Gao S, Lou Z, Wang W, huang B, Dai Y, Xu T. Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.08.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Taylor S, Mehta M, Samokhvalov A. Production of Hydrogen by Glycerol Photoreforming Using Binary Nitrogen-Metal-Promoted N-M-TiO2Photocatalysts. Chemphyschem 2014; 15:942-9. [DOI: 10.1002/cphc.201301140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/25/2014] [Indexed: 11/12/2022]
|
47
|
|
48
|
Carchini G, López N. Adsorption of small mono- and poly-alcohols on rutile TiO2: a density functional theory study. Phys Chem Chem Phys 2014; 16:14750-60. [DOI: 10.1039/c4cp01546k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
|