1
|
Wang Y, Wan Z, Zhu Y, Hu H, Jiang Y, Jiang W, Zhang W, Xin F. Enhanced 1,3-propanediol production with high yield from glycerol through a novel Klebsiella-Shewanella co-culture. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:50. [PMID: 36964595 PMCID: PMC10039557 DOI: 10.1186/s13068-023-02304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND 1,3-Propanediol (1,3-PDO) is a platform compound, which has been widely used in food, pharmaceutical and cosmetic industries. Compared with chemical methods, the biological synthesis of 1,3-PDO has shown promising applications owing to its mild conditions and environmental friendliness. However, the biological synthesis of 1,3-PDO still has the problem of low titer and yield due to the shortage of reducing powers. RESULTS In this study, Klebsiella sp. strain YT7 was successfully isolated, which can synthesize 11.30 g/L of 1,3-PDO from glycerol in flasks. The intracellular redox regulation strategy based on the addition of electron mediators can increase the 1,3-PDO titer to 28.01 g/L. Furthermore, a co-culturing system consisting of strain YT7 and Shewanella oneidensis MR-1 was established, which can eliminate the supplementation of exogenous electron mediators and reduce the by-products accumulation. The 1,3-PDO yield reached 0.44 g/g and the final titer reached 62.90 g/L. The increased titer and yield were attributed to the increased redox levels and the consumption of by-products. CONCLUSIONS A two-bacterium co-culture system with Klebsiella sp. strain YT7 and S. oneidensis strain MR-1 was established, which realized the substitution of exogenous electron mediators and the reduction of by-product accumulation. Results provided theoretical basis for the high titer of 1,3-PDO production with low by-product concentration.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Zijian Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yueting Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Haibo Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
2
|
da Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, de Aguiar Pontes D, Gomes Teixeira LS, Magalhães Pontes LA. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Zahid I, Ayoub M, Abdullah BB, Mukhtar A, Saqib S, Rafiq S, Ullah S, Al‐Sehemi AG, Farrukh S, Danish M. Glycerol Conversion to Solketal: Catalyst and Reactor Design, and Factors Affecting the Yield. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Imtisal Zahid
- Universiti Teknologi PETRONAS (UTP) Department of Chemical Engineering Seri Iskandar 32610 Perak Malaysia
| | - Muhammad Ayoub
- Universiti Teknologi PETRONAS (UTP) Department of Chemical Engineering Seri Iskandar 32610 Perak Malaysia
| | - Bawadi B. Abdullah
- Universiti Teknologi PETRONAS (UTP) Department of Chemical Engineering Seri Iskandar 32610 Perak Malaysia
| | - Ahmad Mukhtar
- Universiti Teknologi PETRONAS (UTP) Department of Chemical Engineering Seri Iskandar 32610 Perak Malaysia
| | - Sidra Saqib
- COMSATS University Islamabad (CUI) Department of Chemical Engineering Lahore Campus 54000 Punjab Pakistan
| | - Sikander Rafiq
- University of Engineering and Technology Department of Chemical Polymer and Composite Material Engineering New Campus Lahore Pakistan
| | - Sami Ullah
- King Khalid University Department of Chemistry, College of Science P.O. Box 9004 61413 Abha Saudi Arabia
| | - Abdullah G. Al‐Sehemi
- King Khalid University Department of Chemistry, College of Science P.O. Box 9004 61413 Abha Saudi Arabia
| | - Sarah Farrukh
- National University of Science and Technology (NUST) School of Chemical and Materials Engineering (SCME) Islamabad Pakistan
| | - Mohammed Danish
- Universiti Kuala Lumpur Malaysia Institute of Chemical and Bio-Engineering Technology Lot 1988, Alor Gajah 78000 Melaka Malaysia
| |
Collapse
|
4
|
Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex. Catalysts 2021. [DOI: 10.3390/catal11010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the last few years, the depletion of the fossil sources and their negative effect on the environment has led to find new alternatives; among these, biodiesel is considered one of the most promising for this purpose. Biodiesel can be produced from the transesterification of vegetable oils or animal fats, obtaining glycerol as a by-product. Glycerol can be used in different processes and one of the most interesting is the condensation with acetone to produce solketal. Among its applications, plasticizers, solvents, and pharmaceutical formulations are the most common. In this work, the attention was focused on the reaction between glycerol and acetone to give solketal promoted by an iron(III) complex. The reaction mechanism was hypothesized, and the kinetics was studied in a batch reactor. Finally, the thermodynamic and kinetic parameters were determined with a reliable model investigating the phenomena that occurred in the reaction network.
Collapse
|
5
|
Zahid I, Ayoub M, Abdullah BB, Nazir MH, Ameen M, Zulqarnain, Mohd Yusoff MH, Inayat A, Danish M. Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04123] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Imtisal Zahid
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Muhammad Ayoub
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Bawadi B. Abdullah
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Muhammad Hamza Nazir
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Mariam Ameen
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Zulqarnain
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Mohd Hizami Mohd Yusoff
- HiCoE, Centre for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Building (ISB), Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| | - Abrar Inayat
- Department of Sustainable & Renewable Energy Engineering University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mohammed Danish
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden campus, Penang 11800, Pulau Pinang Malaysia
| |
Collapse
|
6
|
Valorization of Biodiesel Byproduct Crude Glycerol for the Production of Bioenergy and Biochemicals. Catalysts 2020. [DOI: 10.3390/catal10060609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rapid growth of global biodiesel production requires simultaneous effective utilization of glycerol obtained as a by-product of the transesterification process. Accumulation of the byproduct glycerol from biodiesel industries can lead to considerable environment issues. Hence, there is extensive research focus on the transformation of crude glycerol into value-added products. This paper makes an overview of the nature of crude glycerol and ongoing research on its conversion to value-added products. Both chemical and biological routes of glycerol valorization will be presented. Details of crude glycerol conversion into microbial lipid and subsequent products will also be highlighted.
Collapse
|
7
|
Mitrea L, Vodnar DC. Klebsiella pneumoniae-A Useful Pathogenic Strain for Biotechnological Purposes: Diols Biosynthesis under Controlled and Uncontrolled pH Levels. Pathogens 2019; 8:pathogens8040293. [PMID: 31835652 PMCID: PMC6963399 DOI: 10.3390/pathogens8040293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Despite being a well-known human pathogen, Klebsiella pneumoniae plays a significant role in the biotechnology field, being considered as a microbial cell factory in terms of valuable chemical biosynthesis. In this work, Klebsiella pneumoniae DSMZ 2026 was investigated for its potential to biosynthesize 1,3-propanediol (PDO) and 2,3-butanediol (BDO) during batch fermentation under controlled and uncontrolled pH levels. The bacterial strain was cultivated at a bioreactor level, and it was inoculated in 2 L of specific mineral broth containing 50 g/L of glycerol as the main carbon source. The process was conducted under anaerobic conditions at 37 °C and 180 RPM (rotations per minute) for 24 h. The effect of pH oscillation on the biosynthesis of PDO and BDO was investigated. Samples were taken every 3 h and specific tests were performed: pH measurement, main substrate consumption, PDO and BDO production. The cell morphology was analyzed on both solid and liquid media. After 24 h of cultivation, the maximum concentrations of PDO and BDO were 28.63 ± 2.20 g/L and 18.10 ± 1.10 g/L when the pH value was maintained at 7. Decreased concentrations of PDO and BDO were achieved (11.08 ± 0.14 g/L and 7.35 ± 0.00 g/L, respectively) when the pH level was not maintained at constant values. Moreover, it was identified the presence of other metabolites (lactic, citric, and succinic acids) in the cultivation media at the beginning of the process, after 12 h and 24 h of cultivation.
Collapse
|
8
|
Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol. Catalysts 2018. [DOI: 10.3390/catal8120595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biodiesel is one of the most attractive sources of clean energy. It is produced by the transformation of vegetable oils with up to 10% formation of glycerol as a by-product. Therefore, development of new approaches for processing bio-glycerol into such value-added chemical compounds as solketals is necessary. Thus, various six- and five-membered cyclic compounds can be prepared by acetalization of glycerol with aldehyde or ketone. The resulting glycerol oxygenates are excellent fuel additives that increase viscosity, octane or cetane number, and stability to oxidation. In addition, these products significantly reduce carbon monoxide emissions from standard diesel fuel. In this review, we highlight recent advances in the glycerol valorization for the sustainable production of bio-additives. The review includes a discussion of the innovative and potential catalysts to produce solketals.
Collapse
|
9
|
Rukowicz B, Alejski K. A biologically-derived 1,3-propanediol recovery from fermentation broth using preparative liquid chromatography. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Microbial Cell Factories à la Carte: Elimination of Global Regulators Cra and ArcA Generates Metabolic Backgrounds Suitable for the Synthesis of Bioproducts in Escherichia coli. Appl Environ Microbiol 2018; 84:AEM.01337-18. [PMID: 30030227 DOI: 10.1128/aem.01337-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
Manipulation of global regulators is one of the strategies used for the construction of bacterial strains suitable for the synthesis of bioproducts. However, the pleiotropic effects of these regulators can vary under different conditions and are often strain dependent. This study analyzed the effects of ArcA, CreC, Cra, and Rob using single deletion mutants of the well-characterized and completely sequenced Escherichia coli strain BW25113. Comparison of the effects of each regulator on the synthesis of major extracellular metabolites, tolerance to several compounds, and synthesis of native and nonnative bioproducts under different growth conditions allowed the discrimination of the particular phenotypes that can be attributed to the individual mutants and singled out Cra and ArcA as the regulators with the most important effects on bacterial metabolism. These data were used to identify the most suitable backgrounds for the synthesis of the reduced bioproducts succinate and 1,3-propanediol (1,3-PDO). The Δcra mutant was further modified to enhance succinate synthesis by the addition of enzymes that increase NADH and CO2 availability, achieving an 80% increase compared to the parental strain. Production of 1,3-PDO in the ΔarcA mutant was optimized by overexpression of PhaP, which increased more than twice the amount of the diol compared to the wild type in a semidefined medium using glycerol, resulting in 24 g · liter-1 of 1,3-PDO after 48 h, with a volumetric productivity of 0.5 g · liter-1 h-1 IMPORTANCE Although the effects of many global regulators, especially ArcA and Cra, have been studied in Escherichia coli, the metabolic changes caused by the absence of global regulators have been observed to differ between strains. This scenario complicates the identification of the individual effects of the regulators, which is essential for the design of metabolic engineering strategies. The genome of Escherichia coli BW25113 has been completely sequenced and does not contain additional mutations that could mask or interfere with the effects of the global regulator mutations. The uniform genetic background of the Keio collection mutants enabled the characterization of the physiological consequences of altered carbon and redox fluxes caused by each global regulator deletion, eliminating possible strain-dependent results. As a proof of concept, Δcra and ΔarcA mutants were subjected to further manipulations to obtain large amounts of succinate and 1,3-PDO, demonstrating that the metabolic backgrounds of the mutants were suitable for the synthesis of bioproducts.
Collapse
|
11
|
Optimized 1,3-propanediol production from crude glycerol using mixed cultures in batch and continuous reactors. Bioprocess Biosyst Eng 2018; 41:1807-1816. [PMID: 30167787 DOI: 10.1007/s00449-018-2003-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023]
Abstract
The production of 1,3-propanediol from crude glycerol and mixed anaerobic sludge was investigated in batch experiments and continuous reactors. Using a 23 complete factorial design, the effects of the concentration of glycerol (22-30 g L-1), KH2PO4 (1.50-2.00 g L-1), and vitamin B12 (7-8 mg L-1) were examined in batch reactors. As an evaluated response, the highest 1,3-PD yields occurred for high concentrations of vitamin B12 and low levels of KH2PO4, reaching 0.57 g g-1 glycerol consumed. The variable glycerol concentration was not significant in the studied range. In addition, the condition that provided the best 1,3-PD yield was applied to an anaerobic fluidized bed reactor fed with crude glycerol (26.0 g L-1), which was monitored as the hydraulic retention time (HRT) decreased from 36 to 12 h. The greatest 1,3-PD yield, of 0.31 g g-1 glycerol, was obtained with an HRT of 28 h.
Collapse
|
12
|
Mitrea L, Trif M, Cătoi AF, Vodnar DC. Utilization of biodiesel derived-glycerol for 1,3-PD and citric acid production. Microb Cell Fact 2017; 16:190. [PMID: 29110678 PMCID: PMC5674790 DOI: 10.1186/s12934-017-0807-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Today, biofuels represent a hot topic in the context of petroleum and adjacent products decrease. As biofuels production increase, so does the production of their major byproduct, namely crude glycerol. The efficient usage of raw glycerol will concur to the biodiesel viability. As an inevitable waste of biodiesel manufacturing, glycerol is potentially an attractive substrate for the production of value-added products by fermentation processes, due to its large amounts, low cost and high degree of reduction. One of the most important usages of glycerol is its bioconversion through microbial fermentation to value-added materials like 1,3-propanediol and citric acid. There is a considerable industrial interest in 1,3-propanediol and citric acid production based on microbial fermentations, as it seems to be in competition with traditional technologies utilized for these products. In the present work, yields and concentrations of 1,3-propanediol and citric acid registered for different isolated strains are also described. Microbial bioconversion of glycerol represents a remarkable choice to add value to the biofuel production chain, allowing the biofuel industry to be more competitive. The current review presents certain ways for the bioconversion of crude glycerol into citric acid and 1,3-propanediol with high yields and concentrations achieved by using isolated microorganisms.
Collapse
Affiliation(s)
- Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Monica Trif
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Adriana-Florinela Cătoi
- Pathophysiology Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
13
|
A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00662-17. [PMID: 28476770 DOI: 10.1128/aem.00662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.
Collapse
|
14
|
Guo Y, Dai L, Xin B, Tao F, Tang H, Shen Y, Xu P. 1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. BIORESOURCE TECHNOLOGY 2017; 233:406-412. [PMID: 28315821 DOI: 10.1016/j.biortech.2017.02.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
1,3-Propanediol (1,3-PD), a valuable bulk industrial material, has attracted increasing interest in recent years. A novel strain GYL isolated from soil samples could efficiently convert glycerol to 1,3-PD anaerobically. The physiological and biochemical characteristics of strain GYL were determined, indicating that strain GYL is a member of Clostridium perfringens with the neighbor-joining method of 16S rRNA gene sequences. The fermentation properties of strain GYL were also investigated systematically, which showed that the strain has a fast growth speed and high tolerance to 200g/L glycerol. Batch fermentation was carried out at a high glycerol concentration of 100g/L, and strain GYL produced 36.7g/L 1,3-PD. In fed-batch fermentation, strain GYL showed a maximum productivity of 2.0g/(L·h), and produced 40.0g/L 1,3-PD, with a high yield of 0.68mol 1,3-PD/mol glycerol. This study shows that the newly isolated strain GYL may have potential for 1,3-PD production from glycerol.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lu Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bo Xin
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
15
|
Dams RI, Guilherme AA, Vale MS, Nunes VF, Leitão RC, Santaella ST. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures. ENVIRONMENTAL TECHNOLOGY 2016; 37:2984-2992. [PMID: 27230401 DOI: 10.1080/09593330.2016.1173114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.
Collapse
Affiliation(s)
- Rosemeri I Dams
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Alexandre A Guilherme
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Maria S Vale
- b Institute of Marine Science, Federal University of Ceará , Fortaleza , Brazil
| | - Vanja F Nunes
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Renato C Leitão
- a Brazilian Agricultural Research Corporation , Embrapa Tropical Agroindustry , Fortaleza , Brazil
| | - Sandra T Santaella
- b Institute of Marine Science, Federal University of Ceará , Fortaleza , Brazil
| |
Collapse
|
16
|
Liu JZ, Xu W, Chistoserdov A, Bajpai RK. Glycerol Dehydratases: Biochemical Structures, Catalytic Mechanisms, and Industrial Applications in 1,3-Propanediol Production by Naturally Occurring and Genetically Engineered Bacterial Strains. Appl Biochem Biotechnol 2016; 179:1073-100. [DOI: 10.1007/s12010-016-2051-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
17
|
Rodriguez A, Wojtusik M, Ripoll V, Santos VE, Garcia-Ochoa F. 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations. BIORESOURCE TECHNOLOGY 2016; 200:830-7. [PMID: 26590757 DOI: 10.1016/j.biortech.2015.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 05/21/2023]
Abstract
Shimwellia blattae ATCC 33430 as biocatalyst in the conversion of 1,3-propanediol from glycerol is herein evaluated. Several operational conditions in batch cultivations, employing pure and raw glycerol as sole carbon source, were studied. Temperature was studied at shaken bottle scale, while pH control strategy, together with the influence of raw glycerol and its impurities during fermentation were studied employing a 2L STBR. Thereafter, fluid dynamic conditions were considered by changing the stirring speed and the gas supply (air or nitrogen) in the same scale-up experiments. The best results were obtained at a temperature of 37°C, an agitation rate of 200rpm, with free pH evolution from 6.9 and subsequent control at 6.5 and no gas supply during the fermentation, employing an initial concentration of 30g/L of raw glycerol. Under these conditions, the biocatalyst is competitive, leading to results in line with other previous works in the literature in batch conditions, reaching a final concentration of 1,3-propanediol of 13.84g/L, with a yield of 0.45g/g and a productivity of 1.19g/(Lh) from raw glycerol.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Mateusz Wojtusik
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Vanessa Ripoll
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Victoria E Santos
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain.
| | - F Garcia-Ochoa
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| |
Collapse
|