1
|
Tetteh EB, Krysiak OA, Savan A, Kim M, Zerdoumi R, Chung TD, Ludwig A, Schuhmann W. Long-Range SECCM Enables High-Throughput Electrochemical Screening of High Entropy Alloy Electrocatalysts at Up-To-Industrial Current Densities. SMALL METHODS 2024; 8:e2301284. [PMID: 38155148 DOI: 10.1002/smtd.202301284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Indexed: 12/30/2023]
Abstract
High-entropy alloys (HEAs), especially in the form of compositional complex solid solutions (CCSS), have gained attention in the field of electrocatalysis. However, exploring their vast composition space concerning their electrocatalytic properties imposes significant challenges. Scanning electrochemical cell microscopy (SECCM) offers high-speed electrochemical analysis on surface areas with a lateral resolution down to tens of nm. However, high-precision piezo positioners often used for the motion of the tip limit the area of SECCM scans to the motion range of the piezo positioners which is typically a few tens of microns. To bridge this experimental gap, the study proposes a long-range SECCM system with a rapid gas-exchange environmental cell for high-throughput electrochemical characterization of 100 mm diameter HEA thin-film material libraries (ML) obtained by combinatorial co-sputtering. Due to the gas-liquid interface at the positioned SECCM droplet on the sample, high-throughput evaluation under industrial current density conditions becomes feasible. This allows the direct correlation between electrocatalytic activity and material composition with high statistical reliability. The multidimensional data obtained accelerates materials discovery, development, and optimization.
Collapse
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Moonjoo Kim
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ridha Zerdoumi
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Center for Interface-Dominated High-Performance Materials, ZGH; Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
2
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
3
|
Huang J, Li M, Eslamibidgoli MJ, Eikerling M, Groß A. Cation Overcrowding Effect on the Oxygen Evolution Reaction. JACS AU 2021; 1:1752-1765. [PMID: 34723278 PMCID: PMC8549051 DOI: 10.1021/jacsau.1c00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The influence of electrolyte ions on the catalytic activity of electrode/electrolyte interfaces is a controversial topic for many electrocatalytic reactions. Herein, we focus on an effect that is usually neglected, namely, how the local reaction conditions are shaped by nonspecifically adsorbed cations. We scrutinize the oxygen evolution reaction (OER) at nickel (oxy)hydroxide catalysts, using a physicochemical model that integrates density functional theory calculations, a microkinetic submodel, and a mean-field submodel of the electric double layer. The aptness of the model is verified by comparison with experiments. The robustness of model-based insights against uncertainties and variations in model parameters is examined, with a sensitivity analysis using Monto Carlo simulations. We interpret the decrease in OER activity with the increasing effective size of electrolyte cations as a consequence of cation overcrowding near the negatively charged electrode surface. The same reasoning could explain why the OER activity increases with solution pH on the RHE scale and why the OER activity decreases in the presence of bivalent cations. Overall, this work stresses the importance of correctly accounting for local reaction conditions in electrocatalytic reactions to obtain an accurate picture of factors that determine the electrode activity.
Collapse
Affiliation(s)
- Jun Huang
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Mengru Li
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Mohammad J. Eslamibidgoli
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance: JARA-Energy, 52425 Jülich, Germany
| | - Axel Groß
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz
Institute Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
4
|
Hou S, Kluge RM, Haid RW, Gubanova EL, Watzele SA, Bandarenka AS, Garlyyev B. A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shujin Hou
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
- Catalysis Research Center TUM Ernst-Otto-Fischer-Str. 1 85748 Garching bei München Germany
| | - Regina M. Kluge
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Elena L. Gubanova
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Sebastian A. Watzele
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
- Catalysis Research Center TUM Ernst-Otto-Fischer-Str. 1 85748 Garching bei München Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| |
Collapse
|
5
|
Kumeda T, Hoshi N, Nakamura M. Effect of Hydrophobic Cations on the Inhibitors for the Oxygen Reduction Reaction on Anions and Ionomers Adsorbed on Single-Crystal Pt Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15866-15871. [PMID: 33755425 DOI: 10.1021/acsami.1c01421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weakening of the poisoning by the specifically adsorbed anions assists in developing next-generation electrocatalysts for use in low-temperature fuel cells. In this study, we evaluated how hydrophobic cations with different alkyl chain lengths affect the oxygen reduction reaction (ORR) activities on the single-crystal Pt surfaces in contact with sulfuric acid solution and Nafion ionomers. Interfacial tetraalkylammonium cations with longer alkyl chains activated the ORR on the Pt(111) surface. In a solution containing tetrahexylammonium cations (THA+), the ORR activities on Pt(111) in sulfuric acid solution and on Nafion-modified Pt(111) in perchloric acid solution were four and eight times higher than those in the solutions without THA+, respectively. Infrared spectroscopy revealed the reduction of the amount of (bi)sulfate anions and the sulfonate group of Nafion adsorbed on Pt(111) due to the presence of THA+. The hydrophobic cations weaken the noncovalent interactions between specifically adsorbed species and promote the ORR.
Collapse
Affiliation(s)
- Tomoaki Kumeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Nagahiro Hoshi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Masashi Nakamura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Hpone Myint K, Ding W, Willard AP. The Influence of Spectator Cations on Solvent Reorganization Energy Is a Short-Range Effect. J Phys Chem B 2021; 125:1429-1438. [PMID: 33525875 DOI: 10.1021/acs.jpcb.0c09895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this manuscript, we use classical molecular dynamics simulation to explore the origin of specific cation effects on the rates of bulk-phase aqueous electron transfer (ET) reactions. We consider 0.6 M solutions of Cl- and a series of different cations: Li+, Na+, K+, Rb+, and Cs+. We evaluate the collective electrostatic fluctuations that drive Marcus-like ET and find that they are essentially unaffected by changes in the cationic species. This finding implies that the structure making/breaking properties of various cations do not exert a significant influence on bulk-phase ET reactions. We evaluate the role of ion pairing in these specific cation effects and find, unsurprisingly, that model redox anions that are more highly charged tend to pair more effectively with spectator cations than their monovalent counterparts. We demonstrate that this ion pairing significantly affects local electrostatic fluctuations for the anionic redox species and thus conclude that ion pairing is one of the likely sources of rate-dependent cation effects in aqueous ET reactions.
Collapse
Affiliation(s)
- Kyaw Hpone Myint
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendu Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nat Commun 2020; 11:6181. [PMID: 33268768 PMCID: PMC7710789 DOI: 10.1038/s41467-020-19729-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni2+/(3+δ)+ redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH > NaOH ≈ KOH > RbOH > LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect. It is commonly accepted that electrolyte alkali metal cations modify the catalytic activity for oxygen evolution reaction. Here the authors challenge this assumption, showing that the activity is actually affected by a change in the electrolyte pH rather than a specific alkali cation.
Collapse
|
8
|
Jalilpour S, Bock C, MacDougall BR, Hall DS. The effect of metal solution contaminants on the platinum electro-catalyst during methanol oxidation and oxygen reduction reactions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|
10
|
Hiltrop D, Cychy S, Elumeeva K, Schuhmann W, Muhler M. Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles. Beilstein J Org Chem 2018; 14:1428-1435. [PMID: 29977406 PMCID: PMC6009201 DOI: 10.3762/bjoc.14.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023] Open
Abstract
The effects of the alkali cations Na+ and K+ were investigated in the alkaline electrochemical oxidation of glycerol over Pd nanoparticles (NPs) deposited on functionalized carbon nanotubes (CNTs). The electrocatalytic activity was assessed by cyclic voltammetry revealing a lower overpotential of glycerol oxidation for nitrogen-functionalized Pd/NCNTs compared with oxygen-functionalized Pd/OCNTs. Whereas significantly lower current densities were observed for Pd/OCNT in NaOH than in KOH in agreement with stronger non-covalent interactions on the Pd surface, Pd/NCNT achieved an approximately three-times higher current density in NaOH than in KOH. In situ electrochemistry/IR spectroscopy was applied to unravel the product distribution as a function of the applied potential in NaOH and KOH. The IR spectra exhibited strongly changing band patterns upon varying the potential between 0.77 and 1.17 V vs RHE: at low potentials oxidized C3 species such as mesoxalate and tartronate were formed predominantly, and with increasing potentials C2 and C1 species originating from C–C bond cleavage were identified. The tendency to produce carbonate was found to be less pronounced in KOH. The less favored formation of highly oxidized C3 species and of carbonate is deduced to be the origin of the lower current densities in the cyclic voltammograms (CVs) for Pd/NCNT in KOH. The enhanced current densities in NaOH are rationalized by the presence of Na+ ions bound to the basic nitrogen species in the NCNT support. Adsorbed Na+ ions can form complexes with the organic molecules, presumably enhanced by the chelate effect. In this way, the organic molecules are assumed to be bound more tightly to the NCNT support in close proximity to the Pd NPs facilitating their oxidation.
Collapse
Affiliation(s)
- Dennis Hiltrop
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Steffen Cychy
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Karina Elumeeva
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
11
|
Xue S, Garlyyev B, Watzele S, Liang Y, Fichtner J, Pohl MD, Bandarenka AS. Influence of Alkali Metal Cations on the Hydrogen Evolution Reaction Activity of Pt, Ir, Au, and Ag Electrodes in Alkaline Electrolytes. ChemElectroChem 2018. [DOI: 10.1002/celc.201800690] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Song Xue
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Yunchang Liang
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Johannes Fichtner
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Marcus D. Pohl
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage; Physik-Department; Technische Universität München; James-Franck-Str. 1 85748 Garching Germany
- Nanosystems Initiative Munich (NIM); Schellingstraße 4 80799 Munich Germany
- Catalysis Research Center TUM; Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
| |
Collapse
|
12
|
Huang B, Muy S, Feng S, Katayama Y, Lu YC, Chen G, Shao-Horn Y. Non-covalent interactions in electrochemical reactions and implications in clean energy applications. Phys Chem Chem Phys 2018; 20:15680-15686. [DOI: 10.1039/c8cp02512f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning redox solvation shell disordering was suggested to control reaction entropy change and redox kinetics in thermal electrochemical conversion.
Collapse
Affiliation(s)
- Botao Huang
- Electrochemical Energy Laboratory
- Massachusetts Institute of Technology
- Cambridge
- USA
- Research Laboratory of Electronics
| | - Sokseiha Muy
- Electrochemical Energy Laboratory
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Material Science and Engineering
| | - Shuting Feng
- Electrochemical Energy Laboratory
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemical Engineering
| | - Yu Katayama
- Electrochemical Energy Laboratory
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Applied Chemistry
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory
- Department of Mechanical and Automation Engineering
- The Chinese University of Hong Kong
- Shatin
- China
| | - Gang Chen
- Department of Mechanical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory
- Massachusetts Institute of Technology
- Cambridge
- USA
- Research Laboratory of Electronics
| |
Collapse
|
13
|
Shinagawa T, Takanabe K. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering. CHEMSUSCHEM 2017; 10:1318-1336. [PMID: 27984671 PMCID: PMC5413865 DOI: 10.1002/cssc.201601583] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/15/2016] [Indexed: 05/22/2023]
Abstract
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.
Collapse
Affiliation(s)
- Tatsuya Shinagawa
- KAUST Catalysis Center and Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)4700 KAUSTThuwal23955-6900Saudi Arabia
| | - Kazuhiro Takanabe
- KAUST Catalysis Center and Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)4700 KAUSTThuwal23955-6900Saudi Arabia
| |
Collapse
|
14
|
Chulkin PV, Ragoisha GA, Streltsov EA. Platinum electrochemical corrosion and protection in concentrated alkali metal chloride solutions investigated by potentiodynamic nanogravimetry. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Design and Development of Instrumentations for the Preparation of Platinum Single Crystals for Electrochemistry and Electrocatalysis Research. Part 1: Semi-Automated Crystal Growth. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0331-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Colic V, Pohl MD, Scieszka D, Bandarenka AS. Influence of the electrolyte composition on the activity and selectivity of electrocatalytic centers. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Mi Y, Wen L, Wang Z, Cao D, Zhao H, Zhou Y, Grote F, Lei Y. Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Ikeda T, Boero M. Role of van der Waals corrections in first principles simulations of alkali metal ions in aqueous solutions. J Chem Phys 2015; 143:194510. [DOI: 10.1063/1.4935932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Ganassin A, Colic V, Tymoczko J, Bandarenka AS, Schuhmann W. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media. Phys Chem Chem Phys 2015; 17:8349-55. [DOI: 10.1039/c4cp04791e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrolyte components, which are typically not considered to be directly involved in catalytic processes at solid–liquid electrified interfaces, often demonstrate a significant or even drastic influence on the activity, stability and selectivity of electrocatalysts.
Collapse
Affiliation(s)
- Alberto Ganassin
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Viktor Colic
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Jakub Tymoczko
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Aliaksandr S. Bandarenka
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
- Physik-Department ECS
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES)
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|