1
|
Park C, Shin G, Chung MW, Koo MS, Ham DJ, Lee HC, Weon S, Kim W. Time-resolved spectroscopic investigation for the practical application of a photocatalytic air purifier. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134382. [PMID: 38703675 DOI: 10.1016/j.jhazmat.2024.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.
Collapse
Affiliation(s)
- Cheolwoo Park
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Gahye Shin
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Myoung Won Chung
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, 145 Anam-Ro, Seoul 02841, Republic of Korea
| | - Min Seok Koo
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Dong Jin Ham
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyun Chul Lee
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea.
| | - Seunghyun Weon
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, 145 Anam-Ro, Seoul 02841, Republic of Korea.
| | - Wooyul Kim
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea.
| |
Collapse
|
2
|
Lin Z, Jiang X, Xu W, Li F, Chen X, Wang H, Liu S, Lu X. The effects of water, substrate, and intermediate adsorption on the photocatalytic decomposition of air pollutants over nano-TiO 2 photocatalysts. Phys Chem Chem Phys 2024; 26:662-678. [PMID: 38112019 DOI: 10.1039/d3cp04350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photocatalytic performance of nano-TiO2 photocatalysts in air pollutant degradation greatly depends on the adsorption of water, substrates, and intermediates. Especially under excessive humidity, substrate concentration, and intermediate concentration, the competitive adsorption of water, substrates, and intermediates can seriously inhibit the photocatalytic performance. In the past few years, extensive studies have been performed to investigate the influence of humidity, substrate concentration, and intermediates on the photocatalytic performance of TiO2, and significant advances have been made in the area. However, to the best of our knowledge, there is no review focusing on the effects of water, substrate, and intermediate adsorption to date. A comprehensive understanding of their mechanisms is key to overcoming the limited application of nano-TiO2 photocatalysts in the photocatalytic decomposition of air pollutants. In this review, the progress in experimental and theoretical fields, including a recent combination of photocatalytic experiments and adsorption and photocatalytic simulations by density functional theory (DFT), to explore the impact of adsorption of various reaction components on nano-TiO2 photocatalysts is comprehensively summarized. Additionally, the mechanism and broad perspective of the impact of their adsorption on the photocatalytic activity of TiO2 in air treatment are also critically discussed. Finally, several solutions are proposed to resolve the current problems related to environmental factors. In general, this review contributes a comprehensive perspective of water, substrate, and intermediate adsorption toward boosting the photocatalytic application of TiO2 nanomaterials.
Collapse
Affiliation(s)
- Zhifeng Lin
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Fuhua Li
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xin Chen
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si Liu
- School of Environmental and Chemical Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Rodríguez-González V, Sasaki M, Ishii J, Khan S, Terashima C, Suzuki N, Fujishima A. Indoor gas phase photoactivity of yttrium modified titanate films for fast acetaldehyde oxidation. CHEMOSPHERE 2021; 275:129992. [PMID: 33662721 DOI: 10.1016/j.chemosphere.2021.129992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Photoactive materials hold structural and catalytic features that make them particularly suitable for environmental applications and in the present work, protonated H3Ti3O7-Y nanofiber-like materials were prepared via the microwave assisted hydrothermal technique. The as-prepared nanofibers exhibited high surface area with titanate structure. The nanofibers, before and after yttrium incorporation, were well-distributed and the fibrous morphology could be observed clearly; as the yttrium loading increased, ribbons and the anatase phase were formed. Practical films of these nanofibers confirmed their likely UV-photoactive properties with 200 ppm of acetaldehyde degradation within 25 min in the presence of 50% of humidity. Activity retention was achieved, keeping stability for 2 consecutive cycles at room temperature. Nowadays, the increase in home office work sets human health at risk, for the exposure to toxic volatile organic compounds and microorganisms such as viruses and bacteria is more frequent indoors. In this context, the synthesized photoactive yttrium-titanate films stand as upcoming practical UV-driven materials for cleaning pollution that concentrated urban activity and indoor environments.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección 78216, San Luis Potosí, Mexico; Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Mao Sasaki
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Junki Ishii
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Sovann Khan
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Research Center for Space Colony, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan; Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan.
| | - Norihiro Suzuki
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Research Center for Space Colony, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan.
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, And Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Enesca A, Isac L. Photocatalytic Activity of Cu 2S/WO 3 and Cu 2S/SnO 2 Heterostructures for Indoor Air Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3656. [PMID: 34209012 PMCID: PMC8269650 DOI: 10.3390/ma14133656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
Volatile organic compounds (VOCs) are commonly found in indoor spaces (e.g., homes or offices) and are often related to various illnesses, some of them with carcinogenic potential. The origins of VOC release in the indoor environment are in office products, building materials, electronics, cleaning products, furniture, and maintenance products. VOC removal can be done based on two types of technologies: adsorption in specific materials and decomposition via oxidative processes. The present article reports the development and photocatalytic activity of two heterostructures (Cu2S/WO3 and Cu2S/SnO2) used for indoor air decontamination. The acetaldehyde removal rate is discussed in correlation with the S-scheme mechanisms established between the heterostructure components but also comparatively with the bare catalysts' activity. Acetaldehyde was considered as a VOC reference because it was found by the International Agency for Research on Cancer to be one of the most frequent air toxins with potential carcinogenic effects. The samples contained monoclinic WO3, tetragonal SnO2, and orthorhombic Cu2S crystalline structures. The Cu2S crystallite size in the heterostructure varied from 75.9 to 82.4 Å, depending on the metal oxide substrate. The highest photocatalytic efficiency (75.7%) corresponded to Cu2S/SnO2, with a constant rate of 0.106 s-1 (which was three times faster than WO3 or SnO2 and seven and a half times faster than Cu2S).
Collapse
Affiliation(s)
- Alexandru Enesca
- Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Eroilor 29 Street, 35000 Brasov, Romania
| | - Luminita Isac
- Renewable Energy Systems and Recycling Research Center, Product Design, Mechatronics and Environmental Department, Transilvania University of Brasov, Eroilor 29 Street, 35000 Brasov, Romania;
| |
Collapse
|
5
|
Zhu Z, Yu J. Combination of microwave discharge electrodeless lamp and a TiO 2/HZSM-5 composite for the photocatalytic degradation of dimethyl sulphide. ENVIRONMENTAL RESEARCH 2021; 197:111082. [PMID: 33812875 DOI: 10.1016/j.envres.2021.111082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, an integrated photocatalytic system consisting of a microwave discharge electrodeless lamp (MDEL) and TiO2/HZSM-5 was established to investigate the intensified degradation of dimethyl sulphide (DMS). The system targets optimisation of the reactive oxygen species (ROS) and photocatalytic degradation pathways without catalyst deactivation. TiO2/HZSM-5, containing highly dispersed TiO2 nanoparticles, was prepared through the sol-gel method. TiO2/HZSM-5 exhibits strong acidity and can adsorb DMS in multiple adsorption forms. Thus, the adsorption capacity of TiO2/HZSM-5 is 20 and 53 times higher than that of Aeroxide TiO2 (P25) in dry and highly humid air, respectively. UV-Vis analysis was performed to investigate the ROS in the gas phase. The results show that the concentrations of the ROS increased by 8% and 62.7% in dry and highly humid air, respectively. 1O2 and O (1D), as well as ·OH are the major ROS, accounting for 73.6% and 61.6% in dry and highly humid air, respectively. A total of 92.5% DMS was removed over 600 min in dry air. Microwaves have strong desorption effects on absorbed substances, promoting the degradation of DMS via ROS in the gas phase. Moreover, 1O2, O (1D), and ·OH can mineralise more DMS molecules into SO2 and SO3 through methanesulfonic acid. The highest mineralisation rate of 89.48% was obtained at 90% humidity over 600 min without catalyst deactivation. Therefore, this integrated system induced by microwave radiation can improve ROS production and prevent catalyst deactivation, providing an alternative to achieve higher photocatalytic performances in dry and highly humid air.
Collapse
Affiliation(s)
- Zhen Zhu
- Suzhou Institute of Trade and Commerce, 287 Xuefu Road, Suzhou, 215009, China; Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiang Yu
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China; Institute of Anqing, Beijing University of Chemical Technology, Anqing, 410205, PR China.
| |
Collapse
|
6
|
Enhanced Visible and Ultraviolet Light-Induced Gas-Phase Photocatalytic Activity of TiO2 Thin Films Modified by Increased Amount of Acetylacetone in Precursor Solution for Spray Pyrolysis. Catalysts 2020. [DOI: 10.3390/catal10091011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TiO2 thin films, modified by acetylacetone (AcacH) in solution, were deposited on glass substrate by ultrasonic spray pyrolysis and tested for photocatalytic activity in a multi-section continuous flow reactor by degradation of acetone and acetaldehyde under ultraviolet and visible light. The increase in molar ratio of AcacH in respect of titanium (IV) isopropoxide (TTIP) from 1:5 to 1:8 modified the electronic structure of the films, favoring enhanced photocatalytic activity. The photocatalytic activity was enhanced approximately twofold on the film with molar ratio 1:8 under both irradiations; the film completely oxidized 10 ppm of acetone and acetaldehyde. The photocatalytic efficacy of TiO2 films in oxidation of air pollutants was three times higher compared to the industrial glass Pilkington ActivTM. Moreover, all the synthesized films indicate antibacterial efficiency against E. coli of over 99% under ultraviolet. TiO2 film, with TTIP:AcacH molar ratio 1:8 having great possibility for its commercial use as a material for indoor air purification.
Collapse
|
7
|
Effects of UV-A Light Treatment on Ammonia, Hydrogen Sulfide, Greenhouse Gases, and Ozone in Simulated Poultry Barn Conditions. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gaseous emissions, a side effect of livestock and poultry production, need to be mitigated to improve sustainability. Emissions of ammonia (NH3), hydrogen sulfide (H2S), greenhouse gases (GHGs), and odorous volatile organic compounds (VOCs) have a detrimental effect on the environment, climate, and quality of life in rural communities. We are building on previous research to bring advanced oxidation technologies from the lab to the farm. To date, we have shown that ultraviolet A (UV-A) has the potential to mitigate selected odorous gases and GHGs in the context of swine production. Much less research on emissions mitigation has been conducted in the context of poultry production. Thus, the study objective was to investigate whether the UV-A can mitigate NH3, H2S, GHGs, and O3 in the simulated poultry barn environment. The effects of several variables were tested: the presence of photocatalyst, relative humidity, treatment time, and dust accumulation under two different light intensities (facilitated with fluorescent and light-emitting diode, LED, lamps). The results provide evidence that photocatalysis with TiO2 coating and UV-A light can reduce gas concentrations of NH3, CO2, N2O, and O3, without a significant effect on H2S and CH4. The particular % reduction depends on the presence of photocatalysts, relative humidity (RH), light type (intensity), treatment time, and dust accumulation on the photocatalyst surface. In the case of NH3, the reduction varied from 2.6–18.7% and was affected by RH and light intensity. The % reduction of NH3 was the highest at 12% RH and increased with treatment time and light intensity. The % reduction of NH3 decreased with the accumulation of poultry dust. The % reduction for H2S had no statistical difference under any experimental conditions. The proposed treatment of NH3 and H2S was evaluated for a potential impact on important ambient air quality parameters, the possibility of simultaneously mitigating or generating GHGs. There was no statistically significant change in CH4 concentrations under any experimental conditions. CO2 was reduced at 3.8%–4.4%. N2O and O3 concentrations were reduced by both direct photolysis and photocatalysis, with the latter having greater % reductions. As much as 6.9–12.2% of the statistically-significant mitigation of N2O was observed. The % reduction for O3 ranged from 12.4–48.4%. The results warrant scaling up to a pilot-scale where the technology could be evaluated with economic analyses.
Collapse
|
8
|
Zhang L, Moralejo C, Anderson WA. A review of the influence of humidity on photocatalytic decomposition of gaseous pollutants on TiO
2
‐based catalysts. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lianfeng Zhang
- Department of Chemical EngineeringUniversity of Waterloo Waterloo Ontario Canada
- Laboratory of Ecological and Environmental ProtectionResearch Institute of Tsinghua University in Shenzhen Shenzhen China
| | - Carol Moralejo
- Department of Chemical EngineeringUniversity of Waterloo Waterloo Ontario Canada
| | - William A. Anderson
- Department of Chemical EngineeringUniversity of Waterloo Waterloo Ontario Canada
| |
Collapse
|
9
|
Zhu Z, Su X, Yu J, Zhang T, Qi L, Basit A. Investigation of reactive oxygen species produced by microwave electrodeless discharge lamp on oxidation of dimethyl sulfide. CHEMOSPHERE 2018; 212:1172-1179. [PMID: 30286546 DOI: 10.1016/j.chemosphere.2018.08.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Microwave electrodeless discharge lamp (MEDL) has been regarded as a powerful light source of photoreaction. Four kinds of chemicals, nitrogen (N2), oxygen (O2), water (H2O) and dimethyl sulfide (DMS), were used as molecular probes to explore the generation process of reactive oxygen species (ROS) and their photo-oxidation performances on the photodegradation of organic pollutants with application of an exterior MEDL system. ROS such as O (3P), O3, O (1D) and 1O2 were generated via irradiation of O2 and H2O except dry N2 by MEDL. They were transformed to other ROS including ·OH and H2O2 with increase of relative humidity. The ROS productivity was inhibited evidently by humidity and ·OH became the major active species at high humidity. An optimal mineralization rate of 23.6% for DMS photodegradation was reached in dry air compared with 8.74% at high humidity, which indicated that O (1D) and 1O2 were more powerful oxidants than O3 and OH. The results showed that the higher mineralization rate of organic pollutants was obtained by increasing the generation efficiency of ROS of O (1D) and 1O2. Furthermore, the results provided an alternative to develop intensification technology on photodegadation of organic pollutants with MEDL system and an optimal operation process including photocatalyst and humidity.
Collapse
Affiliation(s)
- Zhen Zhu
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaojiao Su
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jiang Yu
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tingting Zhang
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei Qi
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Abdul Basit
- Research Center of Environmental Catalysis & Separation Process, Beijing Key Laboratory of Energy Environmental Catalysis, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Surface Modification of TiO2 for Obtaining High Resistance against Poisoning during Photocatalytic Decomposition of Toluene. Catalysts 2018. [DOI: 10.3390/catal8110500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titanium oxide (TiO2) nanostructures, the most widely used photocatalysts, are known to suffer from poisoning of the active sites during photocatalytic decomposition of volatile organic compounds. Partially oxidized organic compounds with low volatility stick to the catalyst surface, limiting the practical application for air purification. In this work, we studied the UV-driven photocatalytic activity of bare TiO2 toward toluene decomposition under various conditions and found that surface deactivation is pronounced either under dry conditions or humid conditions with a very high toluene concentration (~442 ppm). In contrast, when the humidity was relatively high (~34 %RH) and toluene concentration was low (~66 ppm), such deactivation was not significant. We then modified TiO2 surfaces by deposition of polydimethylsiloxane and subsequent annealing, which yielded a more hydrophilic surface. We provide experimental evidence that our hydrophilic TiO2 does not show deactivation under the conditions that induce significant deactivation with bare TiO2. Conversion of toluene into dimethylacetamide was observed on the hydrophilic TiO2 and did not result in poisoning of active sites. Our hydrophilic TiO2 shows high potential for application in air purification for extended time, which is not possible using bare TiO2 due to the significant poisoning of active sites.
Collapse
|
11
|
Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0660-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
In this work, photocatalytic degradation of organic dyes such as methylene blue (MB) and indigo carmine (IC) have been studied by composite nanofibers systems containing cellulose acetate (CA), multiwall carbon nanotubes (CNT) and TiO2 nanoparticles under UV light. The amino factionalized TiO2–NH2 NPs cross-linked to the CA/CNT composite nanofibers works as a semiconductor catalyst. The morphology and crystallinity were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy. It was also seen that many factors affected the photodegradation rate, mainly the pH of the solution and the dye concentration, temperature, etc. The study demonstrated that IC degrades at a higher rate than MB. The maximum photodegradation rate of both organic dyes was achieved at a pH 2. In comparison to other studies, this work achieved high photodegradation rate in lower time and using less power intensity.
Collapse
|