1
|
Ma Y, Xu R, Wu X, Wu Y, Zhao L, Wang G, Li F, Shi Z. Progress in Catalysts for Formic Acid Production by Electrochemical Reduction of Carbon Dioxide. Top Curr Chem (Cham) 2024; 383:2. [PMID: 39625556 DOI: 10.1007/s41061-024-00487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Utilising renewable energy to drive the conversion of carbon dioxide into more valuable products can effectively alleviate the energy crisis and protect the environment while actively responding to the policy of "carbon peaking and carbon neutrality". Additionally, formic acid/formate is one of the most promising and commercially valuable products of the electrocatalytic CO2 reduction reaction (ECO2RR) as well as a nonhazardous material for hydrogen storage. With the continuous progress in the field of electrocatalytic CO2 reduction to formic acid/formate (ECO2RF), various electrocatalysts with excellent performance have been developed. In this paper, first, the reaction mechanism of ECO2RF is briefly summarised, and then the recent research progress for various catalysts for ECO2RF, including metal-based catalysts, carbon-based material catalysts, metal-organic framework catalysts, covalent organic framework catalysts, and molecular catalysts, is reviewed. Finally, the current challenges and future perspectives of ECO2RF are discussed and presented.
Collapse
Affiliation(s)
- Yuqi Ma
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou, 234000, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou, 234000, China
| | - Xiang Wu
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China
| | - Yilong Wu
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China
| | - Lei Zhao
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China
| | - Guizhi Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou, 234000, China
| | - Fajun Li
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China.
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou, 234000, China.
| | - Zhisheng Shi
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, Anhui Polytechnic University, Wuhu, 241000, China.
- Anhui Conch Group Co., Ltd, Jinghu District, Wuhu, 241100, China.
| |
Collapse
|
2
|
Zhang C, Follana-Berná J, Dragoe D, Halime Z, Gotico P, Sastre-Santos Á, Aukauloo A. Cobalt Tetracationic 3,4-Pyridinoporphyrazine for Direct CO 2 to Methanol Conversion Escaping the CO Intermediate Pathway. Angew Chem Int Ed Engl 2024:e202411967. [PMID: 39087310 DOI: 10.1002/anie.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Molecular catalysts offer a unique opportunity to implement different chemical functionalities to steer the efficiency and selectivity for the CO2 reduction for instance. Metalloporphyrins and metallophthalocyanines are under high scrutiny since their most classic derivatives the tetraphenylporphyrin (TPP) and parent phthalocyanine (Pc), have been used as the molecular platform to install, hydrogen bonds donors, proton relays, cationic fragments, incorporation in MOFs and COFs, to enhance the catalytic power of these catalysts. Herein, we examine the electrocatalytic properties of the tetramethyl cobalt (II) tetrapyridinoporphyrazine (CoTmTPyPz) for the reduction of CO2 in heterogeneous medium when adsorbed on carbon nanotubes (CNT) at a carbon paper (CP) electrode. Unlike reported electrocatalysis with cobalt based phthalocyanine where CO was advocated as the two electron and two protons reduced intermediate on the way to the formation of methanol, we found here that CoTmTPyPz does not reduce CO to methanol. Henceforth, ruling out a mechanistic pathway where CO is a reaction intermediate.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
- Current address: Electrochemical Excellent Center, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Jorge Follana-Berná
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Wang X, Ju W, Liang L, Riyaz M, Bagger A, Filippi M, Rossmeisl J, Strasser P. Electrochemical CO 2 Activation and Valorization on Metallic Copper and Carbon-Embedded N-Coordinated Single Metal MNC Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401821. [PMID: 38467562 DOI: 10.1002/anie.202401821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
The electrochemical reductive valorization of CO2, referred to as the CO2RR, is an emerging approach for the conversion of CO2-containing feeds into valuable carbonaceous fuels and chemicals, with potential contributions to carbon capture and use (CCU) for reducing greenhouse gas emissions. Copper surfaces and graphene-embedded, N-coordinated single metal atom (MNC) catalysts exhibit distinctive reactivity, attracting attention as efficient electrocatalysts for CO2RR. This review offers a comparative analysis of CO2RR on copper surfaces and MNC catalysts, highlighting their unique characteristics in terms of CO2 activation, C1/C2(+) product formation, and the competing hydrogen evolution pathway. The assessment underscores the significance of understanding structure-activity relationships to optimize catalyst design for efficient and selective CO2RR. Examining detailed reaction mechanisms and structure-selectivity patterns, the analysis explores recent insights into changes in the chemical catalyst states, atomic motif rearrangements, and fractal agglomeration, providing essential kinetic information from advanced in/ex situ microscopy/spectroscopy techniques. At the end, this review addresses future challenges and solutions related to today's disconnect between our current molecular understanding of structure-activity-selectivity relations in CO2RR and the relevant factors controlling the performance of CO2 electrolyzers over longer times, with larger electrode sizes, and at higher current densities.
Collapse
Affiliation(s)
- Xingli Wang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. June 124, 10623, Berlin, Germany
| | - Wen Ju
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. June 124, 10623, Berlin, Germany
- Department of Electrochemistry and Catalysis, Leibniz Institute for Catalysis, 18059, Rostock
| | - Liang Liang
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. June 124, 10623, Berlin, Germany
| | - Mohd Riyaz
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Alexander Bagger
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Michael Filippi
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. June 124, 10623, Berlin, Germany
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Peter Strasser
- Department of Chemistry, Chemical Engineering Division, Technical University of Berlin, Straße des 17. June 124, 10623, Berlin, Germany
| |
Collapse
|
4
|
Bohan A, Jin X, Wang M, Ma X, Wang Y, Zhang L. Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO 2 electroreduction. J Colloid Interface Sci 2024; 654:830-839. [PMID: 37898067 DOI: 10.1016/j.jcis.2023.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) presents a sustainable route to address energy crisis and environmental issues, where the rational design of catalysts remains crucial. Metal-organic frameworks (MOFs) with high CO2 capture capacities have immense potential as CO2RR electrocatalysts but suffer from poor activity. Herein we report a redox-active cobalt protoporphyrin grafted MIL-101(Cr)-NH2 for CO2 electroreduction. Material characterizations reveal that porphyrin molecules are covalently attached to uncoordinated amino groups of the parent MOF without compromising its well-defined porous structure. Furthermore, in situ spectroscopic techniques suggest inherited CO2 concentrate ability and more abundant adsorbed carbonate species on the modified MOF. As a result, a maximum CO Faradaic efficiency (FECO) up to 97.1% and a turnover frequency of 0.63 s-1 are achieved, together with FECO above 90% within a wide potential window of 300 mV. This work sheds new light on the coupling of MOFs with molecular catalysts to enhance catalytic performances.
Collapse
Affiliation(s)
- A Bohan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xixiong Jin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Min Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xia Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Yang Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Lingxia Zhang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, PR China.
| |
Collapse
|
5
|
Masood Z, Ge Q. Mechanism and Selectivity of Electrochemical Reduction of CO 2 on Metalloporphyrin Catalysts from DFT Studies. Molecules 2023; 28:molecules28010375. [PMID: 36615568 PMCID: PMC9823635 DOI: 10.3390/molecules28010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Electrochemical reduction of CO2 to value-added chemicals has been hindered by poor product selectivity and competition from hydrogen evolution reactions. This study aims to unravel the origin of the product selectivity and competitive hydrogen evolution reaction on [MP]0 catalysts (M = Fe, Co, Rh and Ir; P is porphyrin ligand) by analyzing the mechanism of CO2 reduction and H2 formation based on the results of density functional theory calculations. Reduction of CO2 to CO and HCOO- proceeds via the formation of carboxylate adduct ([MP-COOH]0 and ([MP-COOH]-) and metal-hydride [MP-H]-, respectively. Competing proton reduction to gaseous hydrogen shares the [MP-H]- intermediate. Our results show that the pKa of [MP-H]0 can be used as an indicator of the CO or HCOO-/H2 preference. Furthermore, an ergoneutral pH has been determined and used to determine the minimum pH at which selective CO2 reduction to HCOO- becomes favorable over the H2 production. These analyses allow us to understand the product selectivity of CO2 reduction on [FeP]0, [CoP]0, [RhP]0 and [IrP]0; [FeP]0 and [CoP]0 are selective for CO whereas [RhP]0 and [IrP]0 are selective for HCOO- while suppressing H2 formation. These descriptors should be applicable to other catalysts in an aqueous medium.
Collapse
|
6
|
Marcos-Madrazo A, Casado-Coterillo C, Iniesta J, Irabien A. Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO 2 to Ethylene in Alkaline Medium. MEMBRANES 2022; 12:783. [PMID: 36005698 PMCID: PMC9412364 DOI: 10.3390/membranes12080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO2) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO2R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C2H4) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm-2 and a cell potential of -1.9 V, with a C2H4 production rate of 420 µmol m-2 s-1 for the Cu:CS GDE. Upon increasing current density to 90 mA cm-2, however, the production rate of the Cu:CS GDE rose to 509 µmol/m2s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C2H4 to a FE of 98% at 10 mA cm-2 with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO2 crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.
Collapse
Affiliation(s)
- Aitor Marcos-Madrazo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Clara Casado-Coterillo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| | - Jesús Iniesta
- Department of Physical Chemistry, Institute of Electrochemistry, Universidad de Alicante, Av. Raspeig s/n, 03080 Alicante, Spain
| | - Angel Irabien
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
7
|
Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sun Q, Jia C, Zhao Y, Zhao C. Single atom-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64000-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
|
10
|
Nakagaki S, Machado GS, Stival JF, Henrique dos Santos E, Silva GM, Wypych F. Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2021.100335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Chen P, Zhang Y, Zhou Y, Dong F. Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Yang XH, Cuesta A, Cheng J. The energetics of electron and proton transfer to CO 2 in aqueous solution. Phys Chem Chem Phys 2021; 23:22035-22044. [PMID: 34570137 DOI: 10.1039/d1cp02824c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic reduction of CO2 is considered an effective method to reduce CO2 emissions and achieve electrical/chemical energy conversion. It is crucial to determine the reaction mechanism so that the key reaction intermediates can be targeted and the overpotential lowered. The process involves the interaction with the electrode surface and with species, including the solvent, at the electrode-electrolyte interface, and it is therefore not easy to separate catalytic contributions of the electrode from those of the electrolyte. We have used density functional theory-based molecular dynamics to calculate the Gibbs free energy of the proton and electron transfer reactions corresponding to each step in the electroreduction of CO2 to HCOOH in aqueous media. The results show thermodynamic pathways consistent with the mechanism proposed by Hori. Since electrodes are not included in this work, differences between the calculated results and the experimental observations can help determine the catalytic contribution of the electrode surface.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Angel Cuesta
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, AB24 3UE, Scotland, UK.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
13
|
Masood Z, Ge Q. Electrochemical reduction of CO 2 to CO and HCOO - using metal-cyclam complex catalysts: predicting selectivity and limiting potential from DFT. Dalton Trans 2021; 50:11446-11457. [PMID: 34346446 DOI: 10.1039/d1dt02159a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable fuel production from CO2 through electrocatalytic reduction is promising but challenging due to high overpotential and poor product selectivity. Herein, we computed the reaction free energies of electrocatalytic reduction of CO2 to CO and HCOO- using the density functional theory method and screened transition metal(M)-cyclam(L) complexes as molecular catalysts for CO2 reduction. Our results showed that pKa of the proton adduct formed by the protonation of the reduced metal center can be used as a descriptor to select the operating pH of the solution to steer the reaction toward either the CO or hydride cycle. Among the complexes, [LNi]2+ and [LPd]2+ catalyze the reactions by following the CO cycle and are the CO selective catalysts in the pH ranges 1.81-7.31 and 6.10 and higher, respectively. Among the complexes that catalyze the reactions by following the hydride cycle, [LMo]2+ and [LW]3+ are HCOO- selective catalysts and have low limiting potentials of -1.33 V and -1.54 V, respectively. Other complexes, including [LRh]2+, [LIr]2+, [LW]2+, [LCo]2+, and [LTc]2+ catalyze the reactions resulting in either HCOO- from CO2 reduction or H2 from proton reduction; however, HCOO- formation is always thermodynamically more favorable. Notably, [LMo]2+, [LW]3+, [LW]2+ and [LCo]2+ have limiting potentials less negative than -1.6 V and are based on Earth-abundant elements, making them attractive for practical application.
Collapse
Affiliation(s)
- Zaheer Masood
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
| | | |
Collapse
|
14
|
CO2 electrochemical reduction to methane on transition metal porphyrin nitrogen-doped carbon material M@d-NC: theoretical insight. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Paul S, Kao YL, Ni L, Ehnert R, Herrmann-Geppert I, van de Krol R, Stark RW, Jaegermann W, Kramm UI, Bogdanoff P. Influence of the Metal Center in M–N–C Catalysts on the CO2 Reduction Reaction on Gas Diffusion Electrodes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05596] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephen Paul
- Department of Chemistry, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Yi-Lin Kao
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialen und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Lingmei Ni
- Department of Chemistry, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
- Department of Materials and Earth Sciences, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Rayko Ehnert
- Faculty of Computer and Biosciences, University of Applied Sciences Mittweida, Technikumsplatz 17, 09648 Mittweida, Germany
| | - Iris Herrmann-Geppert
- Faculty of Computer and Biosciences, University of Applied Sciences Mittweida, Technikumsplatz 17, 09648 Mittweida, Germany
| | - Roel van de Krol
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialen und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Robert W. Stark
- Department of Materials and Earth Sciences, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Wolfram Jaegermann
- Department of Materials and Earth Sciences, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Department of Chemistry, TU Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Peter Bogdanoff
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialen und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
16
|
Guo S, Asset T, Atanassov P. Catalytic Hybrid Electrocatalytic/Biocatalytic Cascades for Carbon Dioxide Reduction and Valorization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Tristan Asset
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
17
|
Friedman A, Elbaz L. Heterogeneous electrocatalytic reduction of carbon dioxide with transition metal complexes. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Chaturvedi A, Williams CK, Devi N, Jiang JJ. Effects of Appended Poly(ethylene glycol) on Electrochemical CO 2 Reduction by an Iron Porphyrin Complex. Inorg Chem 2021; 60:3843-3850. [PMID: 33629857 DOI: 10.1021/acs.inorgchem.0c03612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical carbon dioxide (CO2) reduction is a sustainable approach for transforming atmospheric CO2 into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO2 reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, FePEGP, with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO2 to carbon monoxide (CO). Controlled-potential electrolysis using FePEGP showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm2 at -2.2 V versus Fc/Fc+ in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 105 s-1 using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO2 adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Nilakshi Devi
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati 45221, Ohio, United States
| |
Collapse
|
19
|
Masel RI, Liu Z, Yang H, Kaczur JJ, Carrillo D, Ren S, Salvatore D, Berlinguette CP. An industrial perspective on catalysts for low-temperature CO 2 electrolysis. NATURE NANOTECHNOLOGY 2021; 16:118-128. [PMID: 33432206 DOI: 10.1038/s41565-020-00823-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Electrochemical conversion of CO2 to useful products at temperatures below 100 °C is nearing the commercial scale. Pilot units for CO2 conversion to CO are already being tested. Units to convert CO2 to formic acid are projected to reach pilot scale in the next year. Further, several investigators are starting to observe industrially relevant rates of the electrochemical conversion of CO2 to ethanol and ethylene, with the hydrogen needed coming from water. In each case, Faradaic efficiencies of 80% or more and current densities above 200 mA cm-2 can be reproducibly achieved. Here we describe the key advances in nanocatalysts that lead to the impressive performance, indicate where additional work is needed and provide benchmarks that others can use to compare their results.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxuan Ren
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle Salvatore
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Lashgari A, Williams CK, Glover JL, Wu Y, Chai J, Jiang JJ. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry 2020; 26:16774-16781. [PMID: 32701198 DOI: 10.1002/chem.202002813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jenna L Glover
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| |
Collapse
|
21
|
Bochlin Y, Ben-Eliyahu Y, Kadosh Y, Kozuch S, Zilbermann I, Korin E, Bettelheim A. DFT and Empirical Considerations on Electrocatalytic Water/Carbon Dioxide Reduction by CoTMPyP in Neutral Aqueous Solutions*. Chemphyschem 2020; 21:2644-2650. [PMID: 33142035 DOI: 10.1002/cphc.202000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Indexed: 11/09/2022]
Abstract
A combined experimental and density functional theory (DFT) investigation was employed in order to examine the mechanism of electrochemical CO2 reduction and H2 formation from water reduction in neutral aqueous solutions. A water soluble cobalt porphyrin, cobalt [5,10,15,20-(tetra-N-methyl-4-pyridyl)porphyrin], (CoTMPyP), was used as catalyst. The possible attachment of different axial ligands as well as their effect on the electrocatalytic cycles were examined. A cobalt porphyrin hydride is a key intermediate which is generated after the initial reduction of the catalyst. The hydride is involved in the formation of H2 and formate and acts as an indirect proton source for the formation of CO in these H+ -starving conditions. The experimental results are in agreement with the computations and give new insights into electrocatalytic mechanisms involving water soluble metalloporphyrins. We conclude that in addition to the porphyrin's structure and metal ion center, the electrolyte surroundings play a key role in dictating the products of CO2 /H2 O reduction.
Collapse
Affiliation(s)
- Yair Bochlin
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer Sheva, Beer Scheva, 84105, Israel
| | | | - Yanir Kadosh
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer Sheva, Beer Scheva, 84105, Israel
| | - Sebastian Kozuch
- Chemistry Department, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre- Negev, 84190 Beer, Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Eli Korin
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer Sheva, Beer Scheva, 84105, Israel
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer Sheva, Beer Scheva, 84105, Israel
| |
Collapse
|
22
|
The great performance of TiO2 nanotubes electrodes modified by copper(II)porphyrin in the reduction of carbon dioxide to alcohol. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Williams CK, Lashgari A, Chai J, Jiang JJ. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. CHEMSUSCHEM 2020; 13:3412-3417. [PMID: 32379922 DOI: 10.1002/cssc.202001037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of primary and second coordination spheres on molecular electrocatalysis have been extensively studied, yet investigations of third functional spheres are rarely reported. Here, an electrocatalyst (ZnPEG8T) was developed with a hydrophilic channel as a third functional sphere that facilitates relay proton shuttling to the primary and second coordination spheres for enhanced catalytic CO2 reduction. Using foot-of-the-wave analysis, the ZnPEG8T catalyst displayed CO2 -to-CO activity (TOFmax ) thirty times greater than that of the benchmark catalyst without a third functional sphere. A kinetic isotopic effect (KIE) study, in conjunction with voltammetry and UV/Vis spectroscopy, uncovered that the rate-limiting step was not the protonation step of the metallocarboxylate intermediate, as observed in many other molecular CO2 reduction electrocatalysts, but rather the replenishment of protons in the proton-shuttling channel. Controlled-potential electrolysis using ZnPEG8T displayed a faradaic efficiency of 100 % for CO2 -to-CO conversion at -2.4 V vs. Fc/Fc+ . A Tafel plot was also generated for a comparison to other reported molecular catalysts. This report validates a strategy for incorporating higher functional spheres for enhanced catalytic efficiency in proton-coupled electron-transfer reactions.
Collapse
Affiliation(s)
- Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| |
Collapse
|
24
|
Yang C, Li S, Zhang Z, Wang H, Liu H, Jiao F, Guo Z, Zhang X, Hu W. Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001847. [PMID: 32510861 DOI: 10.1002/smll.202001847] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/28/2020] [Indexed: 05/03/2023]
Abstract
Electrochemical CO2 reduction (ECR) to value-added chemicals and fuels is regarded as an effective strategy to mitigate climate change caused by CO2 from excess consumption of fossil fuels. To achieve CO2 conversion with high faradaic efficiency, low overpotential, and excellent product selectivity, rational design and synthesis of efficient electrocatalysts is of significant importance, which dominates the development of ECR field. Individual organic molecules or inorganic catalysts have encountered a bottleneck in performance improvement owing to their intrinsic shortcomings. Very recently, organic-inorganic hybrid nanomaterials as electrocatalysts have exhibited high performance and interesting reaction processes for ECR due to the integration of the advantages of both heterogeneous and homogeneous catalytic processes, attracting widespread interest. In this work, the recent advances in designing various organic-inorganic hybrid nanomaterials at the atomic and molecular level for ECR are systematically summarized. Particularly, the reaction mechanism and structure-performance relationship of organic-inorganic hybrid nanomaterials toward ECR are discussed in detail. Finally, the challenges and opportunities toward controlled synthesis of advanced electrocatalysts are proposed for paving the development of the ECR field.
Collapse
Affiliation(s)
- Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Shuyu Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Haiqing Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Huiling Liu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Fei Jiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhenguo Guo
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
25
|
Kang Y, Kim K, Cho B, Kwak Y, Kim J. Highly Sensitive Detection of Benzene, Toluene, and Xylene Based on CoPP-Functionalized TiO 2 Nanoparticles with Low Power Consumption. ACS Sens 2020; 5:754-763. [PMID: 32048833 DOI: 10.1021/acssensors.9b02310] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various metal oxides, titanium dioxide (TiO2) has received considerable interest as a gas-sensing material owing to its high reliability at high operating temperatures. Nonetheless, TiO2 generally has low sensitivity to target gases. In particular, TiO2-based sensors have difficulty in sensitively detecting benzene, toluene, and xylene (referred to as BTX). Moreover, the reported TiO2-based sensors have not simultaneously satisfied the demand for tens of ppb BTX detection and operation with low power consumption. This work proposes a BTX sensor using cobalt porphyrin (CoPP)-functionalized TiO2 nanoparticles as a sensing material on a suspended microheater fabricated by bulk micromachining for low power consumption. TiO2 nanoparticles show an enhanced sensitivity (245%) to 10 ppm toluene with CoPP functionalization. The proposed sensor exhibits high sensitivity to BTX at concentrations ranging from 10 ppm down to several ppb. The high reliability of the sensor is also explored through the long-time operation with repeated exposure to 10 ppm toluene for 14 h.
Collapse
Affiliation(s)
- Yunsung Kang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwanhun Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byeonghwa Cho
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeunjun Kwak
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Franco F, Rettenmaier C, Jeon HS, Roldan Cuenya B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev 2020; 49:6884-6946. [DOI: 10.1039/d0cs00835d] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An overview of the main strategies for the rational design of transition metal-based catalysts for the electrochemical conversion of CO2, ranging from molecular systems to single-atom and nanostructured catalysts.
Collapse
Affiliation(s)
- Federico Franco
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Clara Rettenmaier
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Hyo Sang Jeon
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|
27
|
Zhou H, Zou X, Wu X, Yang X, Li J. Coordination Engineering in Cobalt-Nitrogen-Functionalized Materials for CO 2 Reduction. J Phys Chem Lett 2019; 10:6551-6557. [PMID: 31597421 DOI: 10.1021/acs.jpclett.9b02132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cobalt-nitrogen-functionalized materials have been recognized as promising catalysts for the CO2 reduction reaction because of their superior activity. In order to further improve their activity, we proposed an optimization method through coordination engineering in cobalt-nitrogen-functionalized porphyrin and graphene. By considering a series of derived structures with coordinating nitrogen atoms substituted by carbon or oxygen atoms, a clear activity trend is obtained by constructing a volcano-type plot for activity against adsorption energies of *CO. Detailed electronic structure analysis shows that the enhanced catalytic activity is due to the lacking of π bonding in Co-O bonds compared to Co-C or Co-N bonds in cobalt-centered motifs. This difference allows us to predict the catalytic activity by using the vacancy formation energy of the cobalt atom. Our work provides a general guideline for a rational design of efficient catalysts, which may stimulate further study of coordination engineering for other key energy conversion processes.
Collapse
Affiliation(s)
- Haoqian Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xi Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Xin Yang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| | - Jia Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute (TBSI) & Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
- Laboratory for Computational Materials Engineering, Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P.R. China
| |
Collapse
|
28
|
Asset T, Garcia ST, Herrera S, Andersen N, Chen Y, Peterson EJ, Matanovic I, Artyushkova K, Lee J, Minteer SD, Dai S, Pan X, Chavan K, Calabrese Barton S, Atanassov P. Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01513] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tristan Asset
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
| | - Samuel T. Garcia
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Sergio Herrera
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Nalin Andersen
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yechuan Chen
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
| | - Eric J. Peterson
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ivana Matanovic
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kateryna Artyushkova
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jack Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sheng Dai
- Department of Materials Science & Engineering, Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Department of Materials Science & Engineering, Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Kanchan Chavan
- Department of Chemical & Materials Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Scott Calabrese Barton
- Department of Chemical & Materials Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
29
|
Varela AS, Ju W, Bagger A, Franco P, Rossmeisl J, Strasser P. Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01405] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Sofia Varela
- Institute of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Wen Ju
- The Electrochemical
Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany
| | - Alexander Bagger
- Department of Chemistry, University Copenhagen, Copenhagen 2100, Denmark
| | - Patricio Franco
- Institute of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Jan Rossmeisl
- Department of Chemistry, University Copenhagen, Copenhagen 2100, Denmark
| | - Peter Strasser
- The Electrochemical
Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany
| |
Collapse
|
30
|
Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804257. [PMID: 30589109 DOI: 10.1002/adma.201804257] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/25/2018] [Indexed: 05/29/2023]
Abstract
The electrocatalytic reduction of CO2 provides a sustainable way to mitigate CO2 emissions, as well as store intermittent electrical energy into chemicals. However, its slow kinetics and the lack of ability to control the products of the reaction inhibit its industrial applications. In addition, the immature mechanistic understanding of the reduction process makes it difficult to develop a selective, scalable, and stable electrocatalyst. Carbon-based materials are widely considered as a stable and abundant alternative to metals for catalyzing some of the key electrochemical reactions, including the CO2 reduction reaction. In this context, recent research advances in the development of heterogeneous nanostructured carbon-based catalysts for electrochemical reduction of CO2 are summarized. The leading factors for consideration in carbon-based catalyst research are discussed by analyzing the main challenges faced by electrochemical reduction of CO2 . Then the emerging metal-free doped carbon and aromatic N-heterocycle catalysts for electrochemical reduction of CO2 with an emphasis on the formation of multicarbon hydrocarbons and oxygenates are discussed. Following that, the recent progress in metal-nitrogen-carbon structures as an extension of carbon-based catalysts is scrutinized. Finally, an outlook for the future development of catalysts as well as the whole electrochemical system for CO2 reduction is provided.
Collapse
Affiliation(s)
- Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tiva Sharifi
- Department of Physics, Umeå University, Umeå, 90187, Sweden
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Ying Gao
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
31
|
Yamazaki SI. Metalloporphyrins and related metallomacrocycles as electrocatalysts for use in polymer electrolyte fuel cells and water electrolyzers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Fukuzumi S, Lee YM, Ahn HS, Nam W. Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes. Chem Sci 2018; 9:6017-6034. [PMID: 30090295 PMCID: PMC6053956 DOI: 10.1039/c8sc02220h] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The catalytic conversion of CO2 into valuable chemicals and fuels has attracted increasing attention, providing a promising route for mitigating the greenhouse effect of CO2 and also meeting the global energy demand. Among many homogeneous and heterogeneous catalysts for CO2 reduction, this mini-review is focused on heme and nonheme metal complexes that act as effective catalysts for the electrocatalytic and photocatalytic reduction of CO2. Because metalloporphyrinoids show strong absorption in the visible region, which is sensitive to the oxidation states of the metals and ligands, they are suited for the detection of reactive intermediates in the catalytic CO2 reduction cycle by electronic absorption spectroscopy. The first part of this review deals with the catalytic mechanism for the one-electron reduction of CO2 to oxalic acid with heme and nonheme metal complexes, with an emphasis on how the formation of highly energetic CO2˙ is avoided. Then, the catalytic mechanism of two-electron reduction of CO2 to produce CO and H2O is compared with that to produce HCOOH. The effect of metals and ligands of the heme and nonheme complexes on the CO or HCOOH product selectivity is also discussed. The catalytic mechanisms of multi-electron reduction of CO2 to methanol (six-electron reduced product) and methane (eight-electron reduced product) are also discussed for both electrocatalytic and photocatalytic systems.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Graduate School of Science and Engineering , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- Research Institute for Basic Sciences , Ewha Womans University , Seoul 03760 , Korea
| | - Hyun S Ahn
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea .
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea . ; ;
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
33
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
34
|
Birdja YY, Vos RE, Wezendonk TA, Jiang L, Kapteijn F, Koper MTM. Effects of Substrate and Polymer Encapsulation on CO 2 Electroreduction by Immobilized Indium(III) Protoporphyrin. ACS Catal 2018; 8:4420-4428. [PMID: 29755830 PMCID: PMC5939902 DOI: 10.1021/acscatal.7b03386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/27/2018] [Indexed: 11/29/2022]
Abstract
Heterogenization of molecular catalysts for CO2 electroreduction has attracted significant research activity, due to the combined advantages of homogeneous and heterogeneous catalysts. In this work, we demonstrate the strong influence of the nature of the substrate on the selectivity and reactivity of electrocatalytic CO2 reduction, as well as on the stability of the studied immobilized indium(III) protoporphyrin IX, for electrosynthesis of formic acid. Additionally, we investigate strategies to improve the CO2 reduction by tuning the chemical functionality of the substrate surface by means of electrochemical and plasma treatment and by catalyst encapsulation in polymer membranes. We point out several underlying factors that affect the performance of electrocatalytic CO2 reduction. The insights gained here allow one to optimize heterogenized molecular systems for enhanced CO2 electroreduction without modification of the catalyst itself.
Collapse
Affiliation(s)
- Yuvraj Y. Birdja
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Rafaël E. Vos
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim A. Wezendonk
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Lin Jiang
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Freek Kapteijn
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
35
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712732] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
| | - Anton Wiebe
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| |
Collapse
|
36
|
Göttle AJ, Koper MTM. Determinant Role of Electrogenerated Reactive Nucleophilic Species on Selectivity during Reduction of CO 2 Catalyzed by Metalloporphyrins. J Am Chem Soc 2018; 140:4826-4834. [PMID: 29551059 PMCID: PMC5897864 DOI: 10.1021/jacs.7b11267] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 12/23/2022]
Abstract
This work provides insights to understand the selectivity during the reduction of CO2 with metalloporphyrin (MP) catalysts. The attack of a nucleophile on the carbon of the CO2 appears as an important event that triggers the catalytic reaction, and the nature of this nucleophile determines the selectivity between CO (or further reduced species) and HCOOH/HCOO-. For MP, the possible electrogenerated nucleophiles are the reduced metal-center and the hydride donor species, metal-hydride and phlorin-hydride ligand. The reduced metal-center activates the CO2 with the formation of the metal-carbon bond, which then gives rise to the formation of CO. The hydride donor species trigger the CO2 reduction by the attack of the hydride on the carbon of the CO2 (formation of a C-H bond), which results in the formation of HCOOH/HCOO- (formation of the metal-bonded formate intermediate is not involved). The MP with the metals Ni, Cu, Zn, Pd, Ag, Cd, Ga, In, and Sn are predicted to only form the phlorin-hydride intermediate and are thus suitable to produce HCOOH/HCOO-. This agrees well with the available experimental results. The MP with the metals Fe, Co, and Rh can form both the reduced-metal center and the hydride donor species (metal-hydride and phlorin-hydride), and thus are able to form both CO and HCOOH/HCOO-. The production of CO for Fe and Co is indeed observed experimentally, but not for Rh, probably due to the presence of axial ligands that may hinder the formation of the metal-bonded intermediates and thus drive the CO2RR to HCOOH/HCOO- via the phlorin intermediate.
Collapse
Affiliation(s)
- Adrien J. Göttle
- Leiden Institute of Chemistry, Leiden University, PO
Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, PO
Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
37
|
Francke R, Schille B, Roemelt M. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. Chem Rev 2018; 118:4631-4701. [PMID: 29319300 DOI: 10.1021/acs.chemrev.7b00459] [Citation(s) in RCA: 609] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The utilization of CO2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.
Collapse
Affiliation(s)
- Robert Francke
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Benjamin Schille
- Institute of Chemistry , Rostock University , Albert-Einstein-Strasse 3a , 18059 Rostock , Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie , Ruhr-University Bochum , 44780 Bochum , Germany.,Max-Planck Institut für Kohlenforschung , Kaiser-Wilhelm Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|