1
|
Zhong S, Guo X, Zhou A, Chen Z, Jin D, Fan M, Ma T. Fundamentals and Recent Progress in Magnetic Field Assisted CO 2 Capture and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305533. [PMID: 37786306 DOI: 10.1002/smll.202305533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Indexed: 10/04/2023]
Abstract
CO2 capture and conversion technology are highly promising technologies that definitely play a part in the journey towards carbon neutrality. Releasing CO2 by mild stimulation and the development of high efficiency catalytic processes are urgently needed. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the enhancement of CO2 capture and conversion process. In this review, the recent progress of magnetic field-enhanced CO2 capture and conversion is comprehensively summarized. The theoretical fundamentals of magnetic field on CO2 adsorption, release and catalytic reduction process are discussed, including the magnetothermal, magnetohydrodynamic, spin selection, Lorentz forces, magnetoresistance and spin relaxation effects. Additionally, a thorough review of the current progress of the enhancement strategies of magnetic field coupled with a variety of fields (including thermal, electricity, and light) is summarized in the aspect of CO2 related process. Finally, the challenges and prospects associated with the utilization of magnetic field-assisted techniques in the construction of CO2 capture and conversion systems are proposed. This review offers a reference value for the future design of catalysts, mechanistic investigations, and practical implementation for magnetic field enhanced CO2 capture and conversion.
Collapse
Affiliation(s)
- Siyi Zhong
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Ang Zhou
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Zi'ang Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Dingfeng Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Meiqiang Fan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Tingli Ma
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
2
|
Hydrogenolysis of glycerol to 1,3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO 2 conversion to C 1 products. Catal Sci Technol 2021; 11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
Abstract
The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided.
Collapse
Affiliation(s)
- Md Imteyaz Alam
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Gianluca Moroni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Luca Nardi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
5
|
Donphai W, Kunthakudee N, Munpollasri S, Sangteantong P, Tonlublao S, Limphirat W, Poo-Arporn Y, Kiatphuengporn S, Chareonpanich M. Application of magnetic field to CO hydrogenation using a confined-space catalyst: effect on reactant gas diffusivity and reactivity. RSC Adv 2021; 11:3990-3996. [PMID: 35424344 PMCID: PMC8694129 DOI: 10.1039/d0ra09870a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
An external magnetic field has recently been applied in reaction processes to promote movement and avoid agglomeration of magnetic particles, and also reduce the activation energy through improving the gas-solid contact. In this work, the effect of an external magnetic field on reactant gas diffusivity and reactivity in CO hydrogenation within a confined-space catalyst was investigated for the first time using a conventional reactor packed with a bimetallic 5Fe-5Co/ZSM-5 molecular sieve catalyst. The synergistic effect between magnetic field and limited mass transfer within zeolite cavities improved the mass transfer ability and reaction phenomena of the reactant molecules, leading to enhancement of catalytic activity with tailored reaction pathways. As a result, CO conversion and CH4 selectivity were increased by factors of 1.9 and 1.3 compared to those without a magnetic field. These synergistic interactions are able to provide an innovative challenge for green and sustainable chemical processes and separation processes by means of selective reactant and product mass transfer designed for selective catalytic conversion in the future.
Collapse
Affiliation(s)
- Waleeporn Donphai
- KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Kasetsart University Bangkok 10900 Thailand
| | - Naphaphan Kunthakudee
- KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
| | - Sirapat Munpollasri
- KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Kasetsart University Bangkok 10900 Thailand
| | - Pariyawalee Sangteantong
- KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Kasetsart University Bangkok 10900 Thailand
| | | | - Wanwisa Limphirat
- Synchrotron Light Research Institute Nakhon Ratchasima 30000 Thailand
| | | | - Sirapassorn Kiatphuengporn
- National Nanotechnology Center, National Science and Technology Development Agency Pathumthani 12120 Thailand
| | - Metta Chareonpanich
- KU-Green Catalysts Group, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University Bangkok 10900 Thailand
- Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
6
|
Jiang X, Nie X, Guo X, Song C, Chen JG. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem Rev 2020; 120:7984-8034. [DOI: 10.1021/acs.chemrev.9b00723] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Jiang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332, United States
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, 209 Academic Projects Building, University Park, Pennsylvania 16802, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Liu T, Hong X, Liu G. In Situ Generation of the Cu@3D-ZrOx Framework Catalyst for Selective Methanol Synthesis from CO2/H2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03738] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tangkang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|