1
|
Li X, Chen R, Yang M, Niu Y, Li J, Shao D, Zheng X, Zhang C, Qi Y. Insight into modified CeMn based catalysts for efficient degradation of toluene by in situ infrared. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169192. [PMID: 38097085 DOI: 10.1016/j.scitotenv.2023.169192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Trace activated carbon (AC) and diatomaceous earth (DE) were used as structural promoters to be incorporated into Ce-Mn-based solid-solution catalysts by the redox precipitation method. The modified catalysts exhibit superior reducibility, with abundant Ce3+, Mn3+and reactive oxygen species, which are facilitated to the migration of oxygen and the generation of oxygen vacancies. In particular, the catalytic combustion temperatures of 90 % toluene (3000 ppm) on Ce1Mn3Ox-AC/DE were 84 °C (dry) and 123 °C (10 vol% H2O), respectively. The role of lattice oxygen and adsorbed oxygen was revealed by in situ DRIFTS. Additionally, in situ DRIFTS was employed to verify that the degradation of toluene by Ce1Mn3Ox-AC/DE satisfied the Langmuir-Hinshelwood (L-H) mechanism and the Mars-Van Krevelen (MvK) mechanism. The possible reaction pathway was elucidated (toluene → benzyl alcohol → benzoic acid → maleic anhydride → CO2 + H2O). Furthermore, final products attributed to toluene oxidation were detected by in situ DRIFTS at 50 °C in the absence of oxygen, confirming that the catalyst possessed outstanding performance at low temperatures beyond mere adsorption.
Collapse
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rujie Chen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Min Yang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Dan Shao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China
| | - Xinmei Zheng
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, PR China.
| |
Collapse
|
2
|
Highly efficient acetone oxidation over homogeneous Mn-Al oxides with enhanced OMS-2 active phase. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Barama A, Hadj-Sadok Ouaguenouni M, Barama S. Structural, Textural Properties and Catalytic Activity of Ni–Mn Mixed Oxides in the Combustion of Toluene at Low-Temperatures. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Wang L, Sun Y, Zhu Y, Zhang J, Ding J, Gao J, Ji W, Li Y, Wang L, Ma Y. Revealing the mechanism of high water resistant and excellent active of CuMn oxide catalyst derived from Bimetal-Organic framework for acetone catalytic oxidation. J Colloid Interface Sci 2022; 622:577-590. [PMID: 35526415 DOI: 10.1016/j.jcis.2022.04.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Environmental H2O is an influential factor in the low-temperature catalytic oxidation of volatile organic compounds (VOCs), and it significantly impacts the reaction process and mechanism. Here, a series of rod-like Cu-Mn oxides were synthesised by pyrolysing Cu/Mn-BTC for acetone oxidation. The results confirm that the formation of multiphase interfaces have more excellent catalytic performance compared to single-phase catalysis. This phenomenon can be attributed to the formation of multiphase interfaces, which resulted in the synthesized catalysts with more active oxygen species and defective sites. The CuMn2Ox catalyst exhibited superior catalytic performance (T90 = 150 °C), high water resistance and long-term stability. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy and thermal desorption-gas chromatography-mass spectrometry results indicated that the degradation pathway of acetone was as follows: acetone ((CH3)2CO*) → enolate complexes ((CH2) = C(CH3) O*) → acetaldehyde ((CH3CHO*) → acetate (CH3COO*) → formate (HCOO*) → CO2 and H2O. At a low-temperature, water vapour dissociated a large number of activated hydroxyl groups on the multiphase interface, which promoted the dissociation of enolate complexes and acetaldehyde species. This composite oxide is a promising catalyst for removing oxygenated VOCs at high humidity.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yinbo Zhu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jie Ding
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingdan Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - YuanYuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Liqiong Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Li JR, Zhang WP, Zhao J, Tian M, Wu K, Xiao H, He C. Accelerating the Low-Temperature Catalytic Oxidation of Acetone over Al-Substituted Mn-Al Oxides by Rate-Limiting Step Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36536-36550. [PMID: 35917445 DOI: 10.1021/acsami.2c06186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to enhance the catalytic activity and improve the stability of Mn-Al oxides in acetone oxidation, it is interesting to have found that modulating and accelerating the rate-limiting step by Al substitution rather than just mixing of Mn and Al is crucial for hydrocarbon efficient catalytic destruction. Here, a series of Mn-Al oxides with different Al substitution ratios were prepared by a scalable and facile hydrothermal-redox strategy. The reaction rate, selectivity, and stability of the representative α-MnO2 catalyst in acetone oxidation can be remarkably promoted by simple replacing of the partial framework Mn with Al, which changes the rate-limiting step from acetic acid dissociation to ethanol decomposition accelerated by H2O molecules. Among them, MnAl0.5 displays the best catalytic performance with 90% of acetone converted at just 165 °C and a remarkable CO2 yield. DFT results suggest that the py and px orbitals of the O element take part in the formation of the carbonyl group when the intermediate of removing H* from ethanol reacts with the hydroxyl group of H2O. The dxz orbital of Mn with p-electron of Al plays a vital role in the rate-limiting step. The work provides new insights into engineering catalysts for industrial VOC efficient and economical mineralization.
Collapse
Affiliation(s)
- Jian-Rong Li
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Wan-Peng Zhang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junyi Zhao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Kun Wu
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hang Xiao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, and Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| |
Collapse
|
6
|
Zhang WP, Wu K, Zhao J, He J, Wang L, Xiao H, Guo JB, Li JR. Promotional effects of calcination temperature and H 2O on the catalytic activity of Al-substituted MnAlO catalysts for low-temperature acetone oxidation. CHEMOSPHERE 2022; 301:134722. [PMID: 35483660 DOI: 10.1016/j.chemosphere.2022.134722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
In order to enhance the role of Al in the materials, Al-substituted MnAlO catalysts were synthesized via the hydrothermal-redox method at different calcination temperatures for acetone oxidation. There were Al-substituted α-MnO2 and amorphous aluminum oxide existed with homogeneous dispersion of elements in the catalysts. The surface property, reaction rate, CO2 yield and water resistance of MnAlO catalysts were greatly affected by calcination temperatures. MnAlO-450 catalyst exhibited the best catalytic performance (acetone conversion of 90% at 165 °C) with CO2 yield higher than 99.7%, which was mainly related to the weaker Mn-O bond strength, lower temperature reducibility and abundant Lewis acid sites. The acetone conversion of MnAlO-450 increased by as much as 16% in the presence of 1 vol% H2O compared to that in the absence of H2O at T50 (the temperature for 50% conversion of acetone). The acceleration consumption of ethanol as the main by-product by H2O improved the catalytic performance. This work would shed light on the Al substitution based catalysts for OVOC oxidation with highly efficient and water resistance.
Collapse
Affiliation(s)
- Wan-Peng Zhang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Kun Wu
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Junyi Zhao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, PR China.
| | - Leiping Wang
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Hang Xiao
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Jian-Bing Guo
- College of Chemistry, Minnan Normal University, Zhang zhou, 363000, Fujian, PR China
| | - Jian-Rong Li
- Xiamen Key Laboratory of Gaseous Pollutant Control Materials, Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| |
Collapse
|
7
|
Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154290. [PMID: 35248631 DOI: 10.1016/j.scitotenv.2022.154290] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China; State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaqi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zuotong Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium.
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rino Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Wen M, Dong F, Yao J, Tang Z, Zhang J. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Wen M, Dong F, Tang Z, Zhang J. Engineering order mesoporous CeCoOx catalyst via in-situ confined encapsulation strategy for VOCs catalytic combustion. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Interface-Enhanced Oxygen Vacancies of CoCuO x Catalysts In Situ Grown on Monolithic Cu Foam for VOC Catalytic Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1905-1916. [PMID: 34856794 DOI: 10.1021/acs.est.1c05855] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Caihong Pang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Lizhe Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Serhal CA, El Khawaja R, Labaki M, Mallard I, Poupin C, Cousin R, Siffert S. Influence of Co/Fe molar ratio on hydrotalcite catalysts prepared with or without microwave. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Dai Y, Men Y, Wang J, Liu S, Li S, Li Y, Wang K, Li Z. Tailoring the morphology and crystal facet of Mn3O4 for highly efficient catalytic combustion of ethanol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Park J, Govindan M, Kim D. MgO modified zeolite facilitated low temperature chemisorptive removal of gaseous acetaldehyde into value added intermediate as desorption product. CHEMOSPHERE 2021; 276:130281. [PMID: 34088108 DOI: 10.1016/j.chemosphere.2021.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The adsorptive removal of acetaldehyde is more compatible for real-world applications. However, it must be upgraded from simple adsorption to a high efficiency process with value added products. This study develops a modified zeolite with Mg2+ ions that possesses acid-base sites for the removal of acetaldehyde at room temperature. Through a modified procedure, MgO is coated on commercial zeolite (13x), achieving a porosity of 501 m2 g-1 with MgO particles of 100 nm and pore diameter of 2.6 nm, and high breakthrough capacity of 50.00 mg/g. The initial pH and concentration of Mg2+ ion 12.5 and 0.2 M, respectively, with a maximum breakthrough capacity of 12.72 mg/g at 10% humidity. Significant variations in breakthrough capacity with respect to humidity in the presence of H2S and NH3 demonstrate the effects of water and gases on adsorption efficiency. Desorptive oxidation of adsorbed acetaldehyde at 250 °C yielded a high molecular weight intermediate ethylene oxide formation. The oxidation is followed by aldol condensation and hydrogenation. The higher breakthrough capacity and the intermediate product yielded using the developed MgO-zeolite proves the acid-base reaction sites involved in acetaldehyde removal follows chemisorption and possible process scale-up.
Collapse
Affiliation(s)
- Junhee Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Muthuraman Govindan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Daekeun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
14
|
Min X, Guo M, Liu L, Li L, Gu JN, Liang J, Chen C, Li K, Jia J, Sun T. Synthesis of MnO 2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124743. [PMID: 33310331 DOI: 10.1016/j.jhazmat.2020.124743] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In this work, manganese is selectively and efficiently recovered from spent lithium-ion batteries via advanced oxidation by using potassium permanganate and ozone, and the transition metal-doped α-MnO2 and β-MnO2 are one-step prepared for catalytic oxidation of VOCs. The recovery rate of manganese can be approximately 100% while the recovery efficiency of cobalt, nickel, and lithium is less than 15%, 2%, and 1%, respectively. Compared with pure α-MnO2 and β-MnO2, transition metal-doped α-MnO2 and β-MnO2 exhibit better catalytic performance in toluene and formaldehyde removal attributed to their lower crystallinity, more defects, larger specific surface area, more oxygen vacancies, and better low-temperature redox ability. Besides, the introduction of the appropriate proportion of cobalt or nickel into MnO2 can significantly improve its catalytic activity. Furthermore, the TD/GC-MS result indicates that toluene may be oxidized in the sequence of toluene - benzyl alcohol - benzaldehyde-benzoic acid - acetic acid, 2-cyclohexen-1-one, 4-hydroxy-, cyclopent-4-ene-1,3-dione - carbon dioxide. This method provides a route for the resource utilization of spent LIBs and the synthesis of MnO2.
Collapse
Affiliation(s)
- Xin Min
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Mingming Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, PR China
| | - Lizhong Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Lu Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Chen Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecology Security, Shanghai 200092, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecology Security, Shanghai 200092, PR China
| | - Tonghua Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Guo S, Zhang G, Han ZK, Zhang S, Sarker D, Xu WW, Pan X, Li G, Baiker A. Synergistic Effects of Ternary PdO-CeO 2-OMS-2 Catalyst Afford High Catalytic Performance and Stability in the Reduction of NO with CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:622-630. [PMID: 33356099 DOI: 10.1021/acsami.0c18451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We developed a robust ternary PdO-CeO2-OMS-2 catalyst with excellent catalytic performance in the selective reduction of NO with CO using a strategy based on combining components that synergistically interact leading to an effective abatement of these toxic gases. The catalyst affords 100% selectivity to N2 at the nearly full conversion of NO and CO at 250 °C, high stability in the presence of H2O, and a remarkable SO2 tolerance. To unravel the origin of the excellent catalytic performance, the structural and chemical properties of the PdO-CeO2-OMS-2 nanocomposite were analyzed in the as-prepared and used state of the catalyst, employing a series of pertinent characterization methods and specific catalytic tests. The experimental as well as theoretical results, based on density-functional theory calculations suggest that CO and NO follow different reaction pathways, CO is preferentially adsorbed and oxidized at Pd sites (PdII and Pd0), while NO decomposes on the ceria surface. Lattice oxygen vacancies at the interfacial perimeter of PdO-CeO2 and PdO-OMS-2, and the diffusion of oxygen and oxygen vacancies are proposed to play a critical role in this multicenter reaction system.
Collapse
Affiliation(s)
- Song Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhong-Kang Han
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Shaoyang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Debalaya Sarker
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaoli Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Alfons Baiker
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, Zurich CH-8093, Switzerland
| |
Collapse
|
16
|
Li H, Zhang J, Yang T, Wang Y, Gao H, Wang X, Chai Z. SnNb 2O 6/NiCo-LDH Z-scheme heterojunction with regulated oxygen vacancies obtained by engineering the crystallinity for efficient and renewable photocatalytic H 2 evolution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01019k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnNb2O6/NiCo-LDH Z-scheme heterojunction with abundant oxygen vacancies exhibited highly activity and stability toward photocatalytic H2 evolution, ascribed to the regeneration of oxygen vacancy by engineering the crystallinity.
Collapse
Affiliation(s)
- Hui Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jingyu Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Ting Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yinshu Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Hongyu Gao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhanli Chai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
17
|
Huang Z, Zhao J, Song Z, Liu W, Zhang X, Mao Y, Zhao H, Zhao M, Liu S, Wang Z. Controllable construction of Ce‐Mn‐O
x
with tunable oxygen vacancies and active species for toluene catalytic combustion. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenzhen Huang
- School of Water Conservancy and Engineering Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Jinggang Zhao
- Shenyang University of Chemical Technology Shenyang 110142 People's Republic of China
| | - Zhongxian Song
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
- Faculty of Environmental and Municipal Engineering, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology Henan University of Urban Construction Pingdingshan 467036 People's Republic of China
| | - Wei Liu
- Shenyang University of Chemical Technology Shenyang 110142 People's Republic of China
| | - Xuejun Zhang
- Shenyang University of Chemical Technology Shenyang 110142 People's Republic of China
| | - Yanli Mao
- Faculty of Environmental and Municipal Engineering, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology Henan University of Urban Construction Pingdingshan 467036 People's Republic of China
| | - Heng Zhao
- Shenyang University of Chemical Technology Shenyang 110142 People's Republic of China
| | - Min Zhao
- Shenyang University of Chemical Technology Shenyang 110142 People's Republic of China
| | - Shuixia Liu
- Henan Key Laboratory of Polyamide Intermediates Pingdingshan 467000 People's Republic of China
| | - Zhaodong Wang
- Faculty of Environmental and Municipal Engineering, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology Henan University of Urban Construction Pingdingshan 467036 People's Republic of China
| |
Collapse
|
18
|
Zheng Y, Zhao Q, Shan C, Lu S, Su Y, Han R, Song C, Ji N, Ma D, Liu Q. Enhanced Acetone Oxidation over the CeO 2/Co 3O 4 Catalyst Derived from Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28139-28147. [PMID: 32423199 DOI: 10.1021/acsami.0c04904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel CeO2/Co3O4 catalyst with a high catalytic activity has been designed and prepared by pyrolysis of metal-organic frameworks, and its catalytic performance was evaluated by the acetone catalytic oxidation reaction. The Co3O4-M catalyst with T90 at 194 °C was prepared by pyrolysis of the MOF-71 precursor, which was 56 °C lower than that of commercial Co3O4 (250 °C). By the addition of cerium to the MOF-71 precursor, an enhanced CeO2/Co3O4 catalyst with T90 at 180 °C was prepared. Importantly, the CeO2/Co3O4 catalyst exhibited superior stability for acetone oxidation. After 10 cycle tests, the conversion could also be maintained at 97% for at least 100 h with slight activity loss. Characterization studies were used to investigate the influence of cerium doping on the property of the catalyst. The results showed that addition of cerium could facilitate the expansion of the surface area and enhance the porous structure and reducibility at low temperature. Furthermore, the surface ratio of Co3+/Co2+ and mobile oxygen obviously improved with the addition of cerium. Therefore, the metal oxides prepared by this method have potential for the elimination of acetone.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qian Zhao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Cangpeng Shan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Shuangchun Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Zhao Q, Liu Q, Zheng Y, Han R, Song C, Ji N, Ma D. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co 3O 4 nanowire. CHEMOSPHERE 2020; 244:125532. [PMID: 32050334 DOI: 10.1016/j.chemosphere.2019.125532] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Hierarchical Co3O4@MnOx material has been synthesized by in-suit growth of MnOx on the Co3O4 and applied in catalytic oxidation of volatile organic compounds (VOCs). Results revealed that T90 of acetone on the Co3O4@MnOx was 195 °C, which was 36 °C and 32 °C lower than that on the Co3O4 and MnOx/Co3O4, respectively. The universality experiments demonstrated that T90 of ethyl acetate and toluene on the Co3O4@MnOx were 200 °C and 222 °C, respectively. The above results indicated that Co3O4@MnOx catalyst presented a robust catalytic performance. Characterization results showed that high catalytic activity of the Co3O4@MnOx catalyst could be attributed to the improvement of low temperature reducibility, the enhancement of Co3+ and adsorbed oxygen species resulted from the sufficient reaction between MnO4- and Co2+ during secondary hydrothermal process. Furthermore, stability and water-resistance experiments showed the Co3O4@MnOx catalyst with high cycle and long-term stability, satisfied endurability to 5.5-10 vol. % water vapor at 210 °C.
Collapse
Affiliation(s)
- Qian Zhao
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China.
| | - Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China; State Key Laboratory of Engines, Tianjin University, Tianjin, 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
20
|
Khalaf MM, Abd El-Lateef HM, Alnajjar AO, Mohamed IMA. A facile chemical synthesis of Cu xNi (1-x)Fe 2O 4 nanoparticles as a nonprecious ferrite material for electrocatalytic oxidation of acetaldehyde. Sci Rep 2020; 10:2761. [PMID: 32066833 PMCID: PMC7026399 DOI: 10.1038/s41598-020-59655-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 01/30/2023] Open
Abstract
In the present work, Cu-doped nickel ferrite (CuxNi(1-x)Fe2O4) nanoparticles (CuNFNPs) were chemically fabricated by adding citric acid as a capping agent followed by combustion and calcination for acetaldehyde oxidation reaction (AOR) in KOH electrolytes. The as-prepared CuNFNPs were studied in terms of Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), Field emission scanning electron microscope (FE-SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) specific surface area analyses. The morphology of CuNFNPs has sponges-structure containing irregular pores. Additionally, XRD analysis indicated that the prepared CuNFNPs have a cubic-crystals ferrite without the existence of impurities and the crystal size around 20.2 nm. The electrooxidation of acetaldehyde by the presented CuNFNPs was investigated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) in -OH media. Furthermore, the effects of -OH and acetaldehyde on the electrocatalytic performance were studied with and without Cu-doping in addition to EIS and CA studies which confirm the high-performance of CuNFNPs as an electrocatalyst for AOR.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380 Al Hofuf, 31982, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag university, Sohag, 82524, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380 Al Hofuf, 31982, Al-Ahsa, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Sohag university, Sohag, 82524, Egypt.
| | - Ahmed O Alnajjar
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380 Al Hofuf, 31982, Al-Ahsa, Saudi Arabia
| | - Ibrahim M A Mohamed
- Department of Chemistry, Faculty of Science, Sohag university, Sohag, 82524, Egypt.
| |
Collapse
|