1
|
Ling D, Wang Q, Tian G, Yu H, Zhang D, Wang Q. Oxygen Vacancy-Enriched Bi 2SeO 5 Nanosheets with Dual Mechanism for Ammonium-Ion Batteries. ACS NANO 2023; 17:25222-25233. [PMID: 38060215 DOI: 10.1021/acsnano.3c08460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Ammonium ions feature a light molar mass and small hydrated radius, and the interesting interaction between NH4+ and host materials has attracted widespread attention in aqueous energy storage, while few studies focus on high-performance NH4+ storage anodes. Herein, we present a high-performance inset-type anode for aqueous ammonium-ion batteries (AIBs) based on Bi2SeO5 nanosheets. A reversible NH4+/H+ co-intercalation/deintercalation accompanied by hydrogen bond formation/breaking and a conversion reaction mechanism in layered Bi2SeO5 is proposed according to ex situ characterizations. Accordingly, the optimized Bi2SeO5 anode has a high reversible capacity of 341.03 mAh g-1 at 0.3 A g-1 in 1 M NH4Cl electrolyte and an impressive capacity retention of 86.7% after 7000 cycles at 3 A g-1, which is related to the existence of oxygen vacancies that enhance ion/electron transfer and promote the formation of hydrogen bonds between NH4+ and the host material. When the rocking-chair ammonium-ion battery is assembled using a MnO2 cathode, the device delivers an ultrahigh capacity of 140.73 mAh g-1 at 0.15 A g-1 and energy density of 207.13 Wh kg-1 at the power density of 2985.07 W kg-1. This work provides a promising strategy for designing high-performance anodes for next-generation AIBs.
Collapse
Affiliation(s)
- Dandan Ling
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Qi Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Guofu Tian
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Hao Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Qiufan Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
2
|
Gao M, Wei W, Han T, Li B, Zeng Z, Luo L, Zhu C. Defect Engineering in Thickness-Controlled Bi 2O 2Se-Based Transistors by Argon Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15370-15380. [PMID: 35319194 DOI: 10.1021/acsami.1c24260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a simple, effective, and controllable method to uniformly thin down the thickness of as-exfoliated two-dimensional Bi2O2Se nanoflakes using Ar+ plasma treatment. Atomic force microscopy (AFM) images and Raman spectra indicate that the surface morphology and crystalline quality of etched Bi2O2Se nanoflakes remain almost unaffected. X-ray photoelectron spectra (XPS) indicate that the O and Se vacancies created during Ar+ plasma etching on the top surface of Bi2O2Se nanoflakes are passivated by forming an ultrathin oxide layer with UV O3 treatment. Moreover, a bottom-gate Bi2O2Se-based field-effect transistor (FET) was constructed to research the effect of thicknesses and defects on electronic properties. The on-current/off-current (Ion/Ioff) ratio of the Bi2O2Se FET increases with decreasing Bi2O2Se thickness and is further improved by UV O3 treatment. Eventually, the thickness-controlled Bi2O2Se FET achieves a high Ion/Ioff ratio of 6.0 × 104 and a high field-effect mobility of 5.7 cm2 V-1 s-1. Specifically, the variation trend of the Ion/Ioff ratio and the electronic transport properties for the bottom-gate Bi2O2Se-based FET are well described by a parallel resistor model (including bulk, channel, and defect resistance). Furthermore, the Ids-Vgs hysteresis and its inversion with UV irradiation were observed. The pulsed gate and drain voltage measurements were used to extract trap time constants and analyze the formation mechanism of different hysteresis. Before UV irradiation, the origin of clockwise hysteresis is attributed to the charge trapping/detrapping of defects at the Bi2O2Se/SiO2 interface and in the Bi2O2Se bulk. After UV irradiation, the large anticlockwise hysteresis is mainly due to the tunneling between deep-level oxygen defects in SiO2 and p++-Si gate, which implies the potential in nonvolatile memory.
Collapse
Affiliation(s)
- Ming Gao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Wei Wei
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Tao Han
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Bochang Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Zhe Zeng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Li Luo
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
| | - Chunxiang Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| |
Collapse
|
3
|
Li J, Guan R, Zhang J, Zhao Z, Zhai H, Sun D, Qi Y. Preparation and Photocatalytic Performance of Dumbbell Ag 2CO 3-ZnO Heterojunctions. ACS OMEGA 2020; 5:570-577. [PMID: 31956804 PMCID: PMC6964311 DOI: 10.1021/acsomega.9b03131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 05/24/2023]
Abstract
Dumbbell Ag2CO3-ZnO heterojunctions were synthesized for the first time via a simple in situ precipitation method. The as-prepared Ag2CO3-ZnO heterojunction showed high photocatalytic activity in the decomposition of methyl orange aqueous solution under simulated solar irradiation. The high improvement of photocatalytic activity compared to that of pure ZnO can be attributed to the formation of the Ag2CO3-ZnO heterojunction. Furthermore, the mechanism of photocatalytic activity was investigated in detail. The free radical trapping experiments indicated that the superoxide radical (·O2 -) was an important active species in the photocatalytic process. This paper provides a new prospect for the preparation of photocatalysts with high catalytic performance in the degradation of dye wastewater.
Collapse
Affiliation(s)
- Jiaxin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- College of Chemistry and College of Life Science, Jilin Normal University, Siping 136000, China
| | - Renquan Guan
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- College of Chemistry and College of Life Science, Jilin Normal University, Siping 136000, China
| | - Junkai Zhang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhao Zhao
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hongju Zhai
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- College of Chemistry and College of Life Science, Jilin Normal University, Siping 136000, China
| | - Dewu Sun
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials of the Ministry of Education and Key Laboratory of Functional Materials
Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
- College of Chemistry and College of Life Science, Jilin Normal University, Siping 136000, China
| | - Yunfeng Qi
- College of Chemistry and College of Life Science, Jilin Normal University, Siping 136000, China
| |
Collapse
|
4
|
Feng Z, Zeng L, Zhang Q, Ge S, Zhao X, Lin H, He Y. In situ preparation of g-C 3N 4/Bi 4O 5I 2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J Environ Sci (China) 2020; 87:149-162. [PMID: 31791488 DOI: 10.1016/j.jes.2019.05.032] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 05/16/2023]
Abstract
A graphite carbon nitride (g-C3N4) modified Bi4O5I2 composite was successfully prepared in-situ via the thermal treatment of a g-C3N4/BiOI precursor at 400°C for 3 hr. The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange (MO) degradation under visible light. The best sample presented a degradation rate of 0.164 min-1, which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4, respectively. The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectra (DRS), electrochemical impedance spectroscopy (EIS) and transient photocurrent response in order to explain the enhanced photoactivity. Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly. Nevertheless, the capability for absorbing visible light was improved measurably, which was beneficial to the MO degradation. On top of that, a strong interaction between g-C3N4 and Bi4O5I2 was detected. This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation. Thus, the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2. Additionally, g-C3N4/Bi4O5I2 also presented high stability. •O2- and holes were verified to be the main reactive species.
Collapse
Affiliation(s)
- Zhe Feng
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Zeng
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Qingle Zhang
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shifeng Ge
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyue Zhao
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Fu S, Liu X, Yan Y, Li L, Liu H, Zhao F, Zhou J. Few-layer WS 2 modified BiOBr nanosheets with enhanced broad-spectrum photocatalytic activity towards various pollutants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133756. [PMID: 31400690 DOI: 10.1016/j.scitotenv.2019.133756] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/14/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Herein, an efficient broad-spectrum WS2/BiOBr heterostructure with ultrathin nanosheet was successfully prepared by one-pot hydrothermal route. The self-assembled flower-like WS2/BiOBr nanostructure was formed by few-layer WS2 and BiOBr nanosheets. The optimized heterojunction presented broad-spectrum high-efficiency photocatalytic activity towards the removal of various pollutants under visible-light irradiation, including organic dyes, antibiotics and phenols. This efficiency was linked to high light harvesting combined with effective charge separation/transfer. Meanwhile, the degradation efficiencies varied with nature of the pollutant decreased in the following order: LR5B (99%) > MNZ (97%) > TC (92%) > OTC (92%) > RhB (90%) > CIP (83%) > MB (78%) > MO (62%) > bisphenol (42%) > phenol (40%). The photocatalytic process of ciprofloxacin was explored, and the results indicated that high ciprofloxacin concentrations, low pH values and elevated concentrations of ions (PO43-, HPO42-, H2PO4-, and Cu2+) restrained the photocatalytic performances. Trapping experiments and ESR revealed the significant contribution of holes (h+) in the mechanism, where both superoxide radicals (O2-) and hydroxyl radicals (OH) acted as assistants. Overall, this work could offer a new protocol for the design of highly efficient heterostructure photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Shuai Fu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, Henan, PR China
| | - Yunhui Yan
- Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453007, Henan, PR China
| | - Li Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Haiping Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Fengying Zhao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China
| | - Jianguo Zhou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang 453007, Henan, PR China; Key Laboratory of Green Chemical Media & Reactions (Ministry of Education), Xinxiang 453007, Henan, PR China.
| |
Collapse
|
6
|
Mahmood A, Park JW. TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability. J Colloid Interface Sci 2019; 555:801-809. [DOI: 10.1016/j.jcis.2019.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
|