1
|
Zhang J, Ma Z, Cao A, Yan J, Wang Y, Yu M, Hu L, Pan S. Research progress of Mn-based low-temperature SCR denitrification catalysts. RSC Adv 2024; 14:32583-32601. [PMID: 39421682 PMCID: PMC11483454 DOI: 10.1039/d4ra05140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Selective catalytic reduction (SCR) is a efficiently nitrogen oxides removal technology from stationary source flue gases. Catalysts are key component in the technology, but currently face problems including poor low-temperature activity, narrow temperature windows, low selectivity, and susceptibility to water passivation and sulphur dioxide poisoning. To develop high-efficiency low-temperature denitrification activity catalyst, manganese-based catalysts have become a focal point of research globally for low-temperature SCR denitrification catalysts. This article investigates the denitrification efficiency of unsupported manganese-based catalysts, exploring the influence of oxidation valence, preparation method, crystallinity, crystal form, and morphology structure. It examines the catalytic performance of binary and multicomponent unsupported manganese-based catalysts, focusing on the use of transition metals and rare earth metals to modify manganese oxide. Furthermore, the synergistic effect of supported manganese-based catalysts is studied, considering metal oxides, molecular sieves, carbon materials, and other materials (composite carriers and inorganic non-metallic minerals) as supports. The reaction mechanism of low-temperature denitrification by manganese-based catalysts and the mechanism of sulphur dioxide/water poisoning are analysed in detail, and the development of practical and efficient manganese-based catalysts is considered.
Collapse
Affiliation(s)
- Jiadong Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Zengyi Ma
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Ang Cao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
| | - Jianhua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University Hangzhou 310027 China +86 0571 87952822
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University Ningbo 315100 China
| | - Yuelan Wang
- Shenyang Environmental Resources Exchange Shenyang 110000 China
| | - Miao Yu
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| | - Linlin Hu
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| | - Shaojing Pan
- Xizi Clean Energy Equipment Manufacturing Co., Ltd Hangzhou 311500 China
| |
Collapse
|
2
|
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NO x with Ammonia. Molecules 2024; 29:4506. [PMID: 39339501 PMCID: PMC11434452 DOI: 10.3390/molecules29184506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
Collapse
Affiliation(s)
- Eun Duck Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
He J, Deng J, Lan T, Liu X, Shen Y, Han L, Wang J, Zhang D. Strong metal oxide-zeolite interactions during selective catalytic reduction of nitrogen oxides. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133164. [PMID: 38103292 DOI: 10.1016/j.jhazmat.2023.133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
In response to the stricter EU VII emission standards and the "150 ℃ challenge", selective catalytic reduction by ammonia (NH3-SCR) catalysts for motor vehicles are required to achieve high NO conversion below 200 °C. Compounding metal oxides with zeolites is an important strategy to design the low-temperature SCR catalysts. Here, we original prepared Cu-SSZ-13 @ MnGdOx (Cu-Z @ MGO), which achieved over 90% NO conversion and 95% N2 selectivity at 150 ℃. It has been demonstrated that a uniform mesoporous loaded layer of MGO grows on Cu-Z, and a recrystallization zone appears at the MGO-Cu-Z interface. We discover that the excellent low-temperature SCR activity derives from the strong metal oxide-zeolite interaction (SMZI) effects. The SMZI effects cause the anchor and high dispersion of MGO on the surface of Cu-Z. Driven by the SMZI effects, the Mn3+/Mn4+ redox cycle ensures the low and medium temperature-SCR activity and the Cu2+/Cu+ redox cycle guarantees the medium and high temperature-SCR activity. The introduction of MGO improves the reaction activity of -NH2 species adsorbed at Mn sites at 150 ℃, achieving a cycle of reduction and oxidation reactions at low temperatures. This strategy of inducing SMZI effects of metal oxides and zeolites paves a way for development of high-performance catalysts.
Collapse
Affiliation(s)
- Jiebing He
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Lupeng Han
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Junan Wang
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, Institute of Materials, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
4
|
Ye Z, Liu Y, Nikiforov A, Ji J, Zhao B, Wang J. The research on CO oxidation over Ce-Mn oxides: The preparation method effects and oxidation mechanism. CHEMOSPHERE 2023:139130. [PMID: 37285972 DOI: 10.1016/j.chemosphere.2023.139130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
A series of CeO2-MnOx for highly efficient catalytical oxidation of carbon monoxide were prepared by citrate sol-gel (C), hydrothermal (H) and hydrothermal-citrate complexation (CH) methods. The outcome indicates that the catalyst generated using the CH technique (CH-1:8) demonstrated the greatest catalytic performance for CO oxidation with a T50 of 98 °C, and also good stability in 1400 min. Compared to the catalysts prepared by C and H method, CH-1:8 has the highest specific surface of 156.1 m2 g-1, and the better reducibility of CH-1:8 was also observed in CO-TPR. It is also observed the high ratio of adsorbed oxygen/lattice oxygen (1.5) in the XPS result. Moreover, characterizations by the TOF-SIMS method indicated that obtained catalyst CH-Ce/Mn = 1:8 had stronger interactions between Ce and Mn oxides, and the redox cycle of Mn3++Ce4+ ↔ Mn4++Ce3+ was a key process for CO adsorption and oxidation process. According to in-situ FTIR, the possible reaction pathway for CO was deduced in three ways. CO directly oxidize with O2 to CO2, CO adsorbed on Mn4+ and Ce3+ reacts with O to form intermediates (COO-) (T > 50 °C) and carbonates (T > 90 °C), which are further oxidized into CO2.
Collapse
Affiliation(s)
- Zhiping Ye
- College of Environment, Zhejiang University of Technology, 18 Chaowang RD, Hangzhou, 310014, PR China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, PR China
| | - Yang Liu
- College of Environment, Zhejiang University of Technology, 18 Chaowang RD, Hangzhou, 310014, PR China
| | - Anton Nikiforov
- Ghent University, Faculty of Engineering, Department of Applied Physics, Research Unit Plasma Technology, Sint-Pietersnieuwstraat 41, 9000, Ghent, Belgium
| | - Jiayu Ji
- College of Environment, Zhejiang University of Technology, 18 Chaowang RD, Hangzhou, 310014, PR China
| | - Bo Zhao
- Zhejiang Tuna Environmental Science & Technology Co., Ltd, Shaoxing, 312071, PR China.
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang RD, Hangzhou, 310014, PR China.
| |
Collapse
|
5
|
Peng J, Ye F, Makaya R, Xin Z, Gao Q, Zai J. Doped-Nd enhanced the performance of FeCoMnCe Catalyst on the NOx Selective Catalytic Reduction. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Sm-modified Mn-Ce oxides supported on cordierite as monolithic catalyst for the low-temperature reduction of nitrogen oxides. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Lee MS, Choi YJ, Bak SJ, Son M, Shin J, Lee DH. Polyol-Mediated Synthesis of V 2O 5-WO 3/TiO 2 Catalysts for Low-Temperature Selective Catalytic Reduction with Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3644. [PMID: 36296834 PMCID: PMC9610785 DOI: 10.3390/nano12203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated highly efficient selective catalytic reduction catalysts by adopting the polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency of 96% at 250 °C. The V2O5 and WO3 catalyst nanoparticles prepared using the polyol process were smaller (~10 nm) than those prepared using the impregnation method (~20 nm), and the small catalyst size enabled an increase in surface area and catalytic acid sites. The NOX removal efficiencies at temperatures between 200 and 250 °C were enhanced by approximately 30% compared to those of the catalysts prepared using the conventional impregnation method. The NH3-temperature-programmed desorption and H2-temperature-programmed reduction results confirmed that the polyol process produced more surface acid sites at low temperatures and enhanced the redox ability. The in situ Fourier-transform infrared spectra further elucidated the fast absorption of NH3 and its reduction with NO and O2 on the prepared catalyst surfaces. This study provides an effective approach to synthesizing efficient low-temperature SCR catalysts and may contribute to further studies related to other catalytic systems.
Collapse
|
8
|
Feng S, Li Z, Shen B, Yuan P, Ma J, Wang Z, Kong W. An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115457. [PMID: 35751261 DOI: 10.1016/j.jenvman.2022.115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/27/2021] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Selective catalytic reduction (SCR) technology is currently the most effective deNOx technology and has broad application prospects. Moreover, there is a large NOx content in marine engine exhaust. However, the marine engine SCR catalyst will be affected by heavy metals, SO2, H2O(g), hydrocarbons (HC) and particulate matter (PM) in the exhaust, which will hinder the removal of NOx via SCR. Furthermore, due to the high loading operation of the marine engine and the regeneration of the diesel particulate filter (DPF), the exhaust temperature of the engine may exceed 600 °C, which leads to sintering of the SCR catalysts. Therefore, the development of new catalysts with good tolerances to the above emissions and process parameters is of great significance for further reducing NOx from marine engines. In this work, we first elaborate on the mechanism of the SCR catalyst poisoning caused by marine engine emissions, as well as the working mechanism of SCR catalysts affected by the engine exhaust temperature. Second, we also summarize the current technologies for improving the properties of SCR catalysts with the aim of enhancing the resistance and stability under complex working conditions. Finally, the challenges and perspectives associated with the performance optimization and technology popularization of marine SCR systems are discussed and proposed further. Consequently, this review may provide a valuable reference and inspiration for the development of catalysts and improvement in the denitration ability of SCR systems matched with marine engines.
Collapse
Affiliation(s)
- Shuo Feng
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Zhaoming Li
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Boxiong Shen
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China.
| | - Peng Yuan
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China; School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
| | - Jiao Ma
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Zhuozhi Wang
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Wenwen Kong
- School of Energy and Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
9
|
Enhanced Water and Sulfur Resistance by Sm3+ Modification of Ce–Mn/TiO2 for NH3-SCR. Catal Letters 2022. [DOI: 10.1007/s10562-022-04023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu F, Zhao J, He S, Liu Q, Liu G, Yang L. Stability Mechanism of Low Temperature C 2H 4-SCR with Activated-Carbon-Supported MnO x -Based Catalyst. ACS OMEGA 2022; 7:12004-12014. [PMID: 35449939 PMCID: PMC9016832 DOI: 10.1021/acsomega.2c00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Manganese-based catalysts have shown great potential for use as a hydrocarbon reductant for NO x reduction (HC-SCR) at low temperatures if their catalytic stability could be further maintained. The effect of CeO2 as a promoter and catalyst stability agent for activated carbon supported MnO x was investigated during low temperature deNO x based on a C2H4 reductant. The modern characterization technology could provide a clear understanding of the activity observed during the deNO x tests. When reaction temperatures were greater than 180 °C and with ceria concentrations more than 5%, the overall NO conversion became stable near 70% during long duration testing. In situ DRIFTS shows that C2H4 is adsorbed on the Mn3Ce3/NAC catalysts to generate hydrocarbon activated intermediates, R-COOH, and the reaction mechanism followed the E-R mechanism. The stability and the analytical data pointed to the formation of stable oxygen vacancies within Ce3+/Ce4+ redox couplets that prevented the reduction of MnO2 to crystalline Mn2O3 and promoted the chemisorption of oxygen on the surface of MnO x -CeO x structures. Based on the data, a synergetic mechanism model of the deNO x activity is proposed for the MnO x -CeO x catalysts.
Collapse
Affiliation(s)
- Fang Liu
- School
Of Low-Carbon Energy And Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Jiangyuan Zhao
- School
Of Low-Carbon Energy And Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shengbao He
- Petrochemical
Research Institute of PetroChina, Beijing 102206, China
| | - Qing Liu
- School
Of Low-Carbon Energy And Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Guangli Liu
- Lanzhou
Petrochemical Research Center, PetroChina, Lanzhou 730060, Gansu, China
| | - Li Yang
- School
Of Low-Carbon Energy And Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
11
|
Guo RT, Qin B, Wei LG, Yin TY, Zhou J, Pan WG. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys Chem Chem Phys 2022; 24:6363-6382. [DOI: 10.1039/d1cp05557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective catalytic reduction with NH3 (NH3−SCR) was the most efficient approach to mitigate the emission of nitrogen oxides (NOx). Although the conventional manganese oxide-based catalyst had gradually become a kind...
Collapse
|
12
|
Lee MS, Kim SI, Jeong B, Park JW, Kim T, Lee JW, Kwon G, Lee DH. Ammonium Ion Enhanced V 2O 5-WO 3/TiO 2 Catalysts for Selective Catalytic Reduction with Ammonia. NANOMATERIALS 2021; 11:nano11102677. [PMID: 34685118 PMCID: PMC8540173 DOI: 10.3390/nano11102677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following exposure to SOX because of the generation of ammonium sulfate on the catalyst surface. To overcome these limitations, we coated an NH4+ layer on a vanadium-based catalyst. After silane coating the V2O5-WO3/TiO2 catalyst by vapor evaporation, the silanized catalyst was heat treated under NH3 gas. By decomposing the silane on the surface, an NH4+ layer was formed on the catalyst surface through a substitution reaction. We observed high NOX removal efficiency over a wide temperature range by coating an NH4+ layer on a vanadium-based catalyst. This layer shows high proton conductivity, which leads to the reduction of vanadium oxides and tungsten oxide; additionally, the NOX removal performance was improved over a wide temperature range. These findings provide a new mothed to develop SCR catalyst with high efficiency at a wide temperature range.
Collapse
Affiliation(s)
- Min Seong Lee
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Korea; (M.S.L.); (S.-I.K.); (B.J.); (T.K.)
- Department of Materials Science & Engineering, Pusan National University, Busan 46241, Korea; (J.-W.P.); (J.W.L.)
| | - Sun-I Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Korea; (M.S.L.); (S.-I.K.); (B.J.); (T.K.)
| | - Bora Jeong
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Korea; (M.S.L.); (S.-I.K.); (B.J.); (T.K.)
| | - Jin-Woo Park
- Department of Materials Science & Engineering, Pusan National University, Busan 46241, Korea; (J.-W.P.); (J.W.L.)
- NANO. Co., Ltd., Sangju 37257, Korea
| | - Taehyo Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Korea; (M.S.L.); (S.-I.K.); (B.J.); (T.K.)
| | - Jung Woo Lee
- Department of Materials Science & Engineering, Pusan National University, Busan 46241, Korea; (J.-W.P.); (J.W.L.)
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (G.K.); (D.H.L.); Tel.: +1-785-864-1086 (G.K.); +82-52-980-6709 (D.H.L.); Fax: +82-52-980-6669 (D.H.L.)
| | - Duck Hyun Lee
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Korea; (M.S.L.); (S.-I.K.); (B.J.); (T.K.)
- Correspondence: (G.K.); (D.H.L.); Tel.: +1-785-864-1086 (G.K.); +82-52-980-6709 (D.H.L.); Fax: +82-52-980-6669 (D.H.L.)
| |
Collapse
|
13
|
Kim J, Nam KB, Ha HP. Comparative study of HSO A-/SO A2- versus H 3-BPO 4B- functionalities anchored on TiO 2-supported antimony oxide-vanadium oxide-cerium oxide composites for low-temperature NO X activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125780. [PMID: 33865113 DOI: 10.1016/j.jhazmat.2021.125780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
TiO2-supported antimony oxide-vanadium oxide-cerium oxide (SVC) imparts Lewis acidic (L)/Brönsted acidic (B) sites, labile (Oα)/mobile oxygens (OM), and oxygen vacancies (OV) for selective catalytic NOX reduction (SCR). However, these species are harmonious occasionally, readily poisoned by H2O/sulfur/phosphorus/carbon, thus limiting SCR performance of SVC. Herein, a synthetic means is reported for immobilizing HSOA-/SOA2- (A= 3-4) or H3-BPO4B- (B= 1-3) on the L sites of SVC to form SVC-S and SVC-P. HSOA-/SOA2-/H3-BPO4B- acted as additional B sites with distinct characteristics, altered the properties of Oα/OM/OV species, thereby affecting the SCR activities and performance of SVC-S and SVC-P. SVC-P activated Langmuir-Hinshelwood-typed SCR better than SVC-S, as demonstrated by a greater Oα-directed pre-factor and smaller binding energy between Oα and NO. Meanwhile, SVC-S provided a larger B-directed pre-factor, thereby outperforming SVC-P in activating Eley-Rideal-typed SCR that dictated the overall SCR activities. Compared with SVC-S, SVC-P contained fewer OV species, yet, had higher OM mobility, thus enhancing the overall redox cycling feature, while providing greater Brönsted acidity. Consequently, the resistance of SVC-P to H2O or soot were greater than or similar to that of SVC-S. Conversely, SVC-S revealed greater tolerance to hydro-thermal aging and SO2 than SVC-P. This study highlights the pros and cons of HSOA-/SOA2-/H3-BPO4B- functionalities in tailoring the properties of metal oxides in use as SCR catalysts.
Collapse
Affiliation(s)
- Jongsik Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| | - Ki Bok Nam
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| | - Heon Phil Ha
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
14
|
Selective catalytic reduction of NO by Co-Mn based nanocatalysts. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One of the most significant aspects in selective catalytic reduction (SCR) of nitrogen oxides (NOx) is developing suitable catalysts by which the process occurs in a favorable way. At the present work SCR reaction by ammonia (NH3-SCR) was conducted using Co-Mn spinel and its composite with Fe-Mn spinel, as nanocatalysts. The nanocatalysts were fabricated through liquid routes and then their physicochemical properties such as phase composition, degree of agglomeration, particle size distribution, specific surface area and also surface acidic sites have been investigated by X-ray diffraction, Field Emission Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy, energy dispersive spectroscopy mapping, Brunauer–Emmett–Teller, temperature-programmed reduction (H2-TPR) and temperature-programmed desorption of ammonia (NH3-TPD) analysis techniques. The catalytic activity tests in a temperature window of 150–400 °C and gas hourly space velocities of 10,000, 18,000 and 30,000 h−1 revealed that almost in all studied conditions, CoMn2O4/FeMn2O4 nanocomposite exhibited better performance in SCR reaction than CoMn2O4 spinel.
Collapse
|
15
|
Xu G, Guo X, Cheng X, Yu J, Fang B. A review of Mn-based catalysts for low-temperature NH 3-SCR: NO x removal and H 2O/SO 2 resistance. NANOSCALE 2021; 13:7052-7080. [PMID: 33889905 DOI: 10.1039/d1nr00248a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The development of high-efficiency catalysts is the key to the low-temperature NH3-SCR technology. The introduction of SO2 and H2O will lead to poisoning and deactivation of the catalysts, which severely limits the development and application of NH3-SCR technology. This review introduces the necessity of NOx removal, explains the mechanisms of H2O and SO2 poisoning on NH3-SCR catalysts, highlights the Mn-based catalysts of different active metals and supports and their resistance to H2O and SO2, and analyses the relationship between metal modification, selection of support and preparation method, morphology and structure design and SO2/H2O resistance. Given the current problems, this review points out the future research focus of Mn-based catalysts and also puts forward corresponding countermeasures to solve the existing problems.
Collapse
Affiliation(s)
- Guiying Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | | | | | | | | |
Collapse
|
16
|
Rajkumar T, Sápi A, Ábel M, Kiss J, Szenti I, Baán K, Gómez-Pérez JF, Kukovecz Á, Kónya Z. Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M = Zn, Mn) in CO2 Hydrogenation Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03591-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zeng Y, Haw K, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S. Recent Progress of CeO
2
−TiO
2
Based Catalysts for Selective Catalytic Reduction of NO
x
by NH
3. ChemCatChem 2020. [DOI: 10.1002/cctc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yiqing Zeng
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Kok‐Giap Haw
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Yanan Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Shule Zhang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Zhigang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| | - Qin Zhong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R. China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117582 Singapore
| |
Collapse
|
18
|
Du H, Han Z, Wang Q, Gao Y, Gao C, Dong J, Pan X. Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO 2 catalysts for selective reduction of NO with ammonia at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40870-40881. [PMID: 32671715 DOI: 10.1007/s11356-020-10073-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Fe-Mn/TiO2 catalysts were prepared through the wet impregnation process to selective catalytic reduction of NO by NH3 at low temperature, and series of experiments were conducted to investigate the effects of key precursors on their SCR performance. Ferric nitrate, ferrous sulfate, and ferrous chloride were chosen as Fe precursors while manganese nitrate, manganese acetate, and manganese chloride as Mn precursors. These precursors had been commonly used to prepare Fe-Mn/TiO2 catalysts by numerous researchers. The results showed that there were distinct differences in NO conversion efficiencies at low temperature of catalysts prepared with different precursors. Catalysts prepared with ferric nitrate and manganese nitrate precursors exhibited the best catalytic performance at low temperature, while three kinds of catalysts prepared with manganese chloride precursors exhibited significantly low catalytic activity. All catalysts were characterized by XRD, SEM, H2-TPR, NH3-TPD, and XPS. The results indicated that when the catalysts were prepared with manganese nitrate or manganese acetate as precursors, Mn4+ contents and Oβ/(Oβ + Oα) ratios decreased in an order of ferric nitrate > ferrous sulfate > ferrous chloride, which was consistent with the change of catalytic activities of the corresponding catalysts at low temperature. It can be found that the excellent catalytic performance of Fe(A)-Mn(a)/TiO2 was ascribed to high redox property and enrichment of Mn4+species and surface chemical labile oxygen groups.
Collapse
Affiliation(s)
- Huan Du
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China.
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China.
| | - Qimeng Wang
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China
| | - Yu Gao
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China
| | - Cong Gao
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China
| | - Jingming Dong
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China
| | - Xinxiang Pan
- Marine Engineering College, Dalian Maritime University, No.1, Linghai Road, Dalian, 116026, China.
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian, 116026, China.
- Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
| |
Collapse
|
19
|
Gholami F, Tomas M, Gholami Z, Vakili M. Technologies for the nitrogen oxides reduction from flue gas: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136712. [PMID: 31991274 DOI: 10.1016/j.scitotenv.2020.136712] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The required energy of the global industry is mostly generated from fossil fuel sources, such as natural gas, gasoline, diesel, oil, and coal. Nitrogen oxides are one of the main air pollutants that are produced from the combustion of fossil fuels in stationary and mobile sources. Development of new technologies to decrease the NOx emission from exhaust gases is essential due to the harmful effect of NOx on the environment and human health. Compared with pre-combustion and combustion methods (with <50% NOx removal efficiency), the post-combustion methods with higher efficiency (above 80%) have attracted more attention in NOx elimination. This review describes the currently used technologies of NOx abatement. Different available post-combustion methods of NOx removal, including selective catalytic reduction (using different types of reducing reagents, including ammonia, hydrogen, hydrocarbons, and carbon monoxide), selective noncatalytic reduction, wet scrubbing, adsorption, electron beam, nonthermal plasma, and electrochemical reduction of NOx, are discussed.
Collapse
Affiliation(s)
- Fatemeh Gholami
- New Technologies - Research Centre, Engineering of Special Materials, University of West Bohemia, Plzeň 301 00, Czech Republic.
| | - Martin Tomas
- New Technologies - Research Centre, Engineering of Special Materials, University of West Bohemia, Plzeň 301 00, Czech Republic
| | - Zahra Gholami
- Unipetrol Centre of Research and Education, a.s, Areál Chempark 2838, Záluží 1, 43670 Litvínov, Czech Republic
| | - Mohammadtaghi Vakili
- Green intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|
20
|
Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Raja S, Alphin MS, Sivachandiran L. Promotional effects of modified TiO2- and carbon-supported V2O5- and MnOx-based catalysts for the selective catalytic reduction of NOx: a review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01348j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review presents the promotional effects of transition metal modification over TiO2- and carbon-supported V2O5- and MnOx-based SCR catalysts.
Collapse
Affiliation(s)
- S. Raja
- Department of Mechanical Engineering
- Sri Sivasubramaniya Nadar College of Engineering
- Kalavakkam 603110
- India
| | - M. S. Alphin
- Department of Mechanical Engineering
- Sri Sivasubramaniya Nadar College of Engineering
- Kalavakkam 603110
- India
| | - L. Sivachandiran
- Department of chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| |
Collapse
|
22
|
Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem Rev 2019; 119:10916-10976. [DOI: 10.1021/acs.chemrev.9b00202] [Citation(s) in RCA: 568] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lupeng Han
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Sixiang Cai
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Penglu Wang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Comprehensive Comparison between Nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 for NO Catalytic Conversion: An Insight from Nanostructure, Performance, Kinetics, and Thermodynamics. Catalysts 2019. [DOI: 10.3390/catal9020175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The nanocatalysts of Mn−Co/TiO2 and Mn−Fe/TiO2 were synthesized by hydrothermal method and comprehensively compared from nanostructures, catalytic performance, kinetics, and thermodynamics. The physicochemical properties of the nanocatalysts were analyzed by N2 adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). Based on the multiple characterizations performed on Mn−Co/TiO2 and Mn−Fe/TiO2 nanocatalysts, it can be confirmed that the catalytic properties were decidedly dependent on the phase compositions of the nanocatalysts. The Mn−Co/TiO2 sample presented superior structure characteristics than Mn−Fe/TiO2, with the increased surface area, the promoted active components distribution, the diminished crystallinity, and the reduced nanoparticle size. Meanwhile, the Mn4+/Mnn+ ratios in the Mn−Co/TiO2 nanocatalyst were higher than Mn−Fe/TiO2, which further confirmed the better oxidation ability and the larger amount of Lewis acid sites and Bronsted acid sites on the sample surface. Compared to Mn−Fe/TiO2 nanocatalyst, Mn−Co/TiO2 nanocatalyst displayed the preferable catalytic property with higher catalytic activity and stronger selectivity in the temperature range of 75–250 °C. The results of mechanism and kinetic study showed that both Eley-Rideal mechanism and Langmuir-Hinshelwood mechanism reactions contributed to selective catalytic reduction of NO with NH3 (NH3-SCR) over Mn−Fe/TiO2 and Mn−Co/TiO2 nanocatalysts. In this test condition, the NO conversion rate of Mn−Co/TiO2 nanocatalyst was always higher than that of Mn−Fe/TiO2. Furthermore, comparing the reaction between doping transition metal oxides and NH3, the order of temperature−Gibbs free energy under the same reaction temperature is as follows: Co3O4 < CoO < Fe2O3 < Fe3O4, which was exactly consistent with nanostructure characterization and NH3-SCR performance. Meanwhile, the activity difference of MnOx exhibited in reducibility properties and Ellingham Diagrams manifested the promotion effects of cobalt and iron dopings. Generally, it might offer a theoretical method to select superior doping metal oxides for NO conversion by comprehensive comparing the catalytic performance with the insight from nanostructure, catalytic performance, reaction kinetics, and thermodynamics.
Collapse
|