1
|
Yan C, Cai X, Zhou X, Luo Z, Deng J, Tian X, Shi J, Li W, Luo Y. Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J Colloid Interface Sci 2025; 678:858-871. [PMID: 39222606 DOI: 10.1016/j.jcis.2024.08.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China
| | - Xiunan Cai
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiguang Deng
- Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xincong Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jinyu Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Gabrovska M, Nikolova D, Radonjić V, Karashanova D, Baeva A, Parvanova-Mancheva T, Tzvetkov P, Petrova E, Zarkova G, Krstić J. Structure Engineering of Ni/SiO 2 Vegetable Oil Hydrogenation Catalyst via CeO 2. Int J Mol Sci 2024; 25:7585. [PMID: 39062829 PMCID: PMC11276988 DOI: 10.3390/ijms25147585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Inspired by our finding that metallic Ni particles could be uniformly distributed on a reduced CeO2 surface and stabilized on Ce3+ sites, we suppose a possible improvement in the activity and selectivity of the MgNi/SiO2 vegetable oil hydrogenation catalyst by increasing the surface metal Ni availability via modification by ceria. The proposed approach involved the addition of a CeO2 modifier to the SiO2 carrier and as a catalyst component. Evaluation of the structure, reducibility, and surface and electronic states of the CeO2-doped MgNi/SiO2 catalyst was performed by means of the Powder X-ray diffraction (PXRD), Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) combined with High-resolution transmission electron microscopy (HRTEM), Temperature-programmed reduction with hydrogen (H2-TPR), and H2-chemisortion techniques. So far, no studies related to this approach of designing Ni/SiO2 catalysts for the partial hydrogenation of vegetable oil have been reported. The added ceria impact was elucidated by comparing fatty acid compositions obtained by the catalysts at an iodine value of 80. In summary, tuning the hydrogenation performance of Ni-based catalysts can be achieved by structural reconstruction using 1 wt.% CeO2. The introduction mode changed the selectivity towards C18:1-cis and C18:0 fatty acids by applying ceria as a carrier modifier, while hydrogenation activity was improved upon ceria operation as the catalyst dopant.
Collapse
Affiliation(s)
- Margarita Gabrovska
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); or (T.P.-M.); (E.P.); (G.Z.)
| | - Dimitrinka Nikolova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); or (T.P.-M.); (E.P.); (G.Z.)
| | - Vojkan Radonjić
- Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, University of Belgrade, 11006 Belgrade, Serbia;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Aleksandra Baeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.B.); (P.T.)
| | | | - Peter Tzvetkov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.B.); (P.T.)
| | - Evangeliya Petrova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); or (T.P.-M.); (E.P.); (G.Z.)
| | - Gabriella Zarkova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); or (T.P.-M.); (E.P.); (G.Z.)
| | - Jugoslav Krstić
- Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, University of Belgrade, 11006 Belgrade, Serbia;
| |
Collapse
|
3
|
Zhou Y, Sun Q, Yu J, Zhang J, Sheng J. One-pot synthesis of NiCo-phyllosilicate supported on zeolite for enhanced degradation of antibiotic contaminants. NANOTECHNOLOGY 2024; 35:315601. [PMID: 38663370 DOI: 10.1088/1361-6528/ad4362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
The overuse of antibiotics currently results in the presence of various antibiotics being detected in water bodies, which poses potential risks to human health and the environment. Therefore, it is highly significant to remove antibiotics from water. In this study, we developed novel rod-like NiCo-phyllosilicate hybrid catalysts on calcined natural zeolite (NiCo@C-zeolite) via a facile one-pot process. The presence of the zeolite served as both a silicon source and a support, maintaining a high specific surface area of the NiCo@C-zeolite. Remarkably, NiCo@C-zeolite exhibited outstanding catalytic performance in antibiotic degradation under PMS activation. Within just 5 min, the degradation rate of metronidazole (MNZ) reached 96.14%, ultimately achieving a final degradation rate of 99.28%. Furthermore, we investigated the influence of catalyst dosage, PMS dosage, MNZ concentration, initial pH value, and various inorganic anions on the degradation efficiency of MNZ. The results demonstrated that NiCo@C-zeolite displayed outstanding efficacy in degrading MNZ under diverse conditions and maintained a degradation rate of 94.86% at 60 min after three consecutive cycles of degradation. Free radical quenching experiments revealed that SO•-4played a significant role in the presence of NiCo@C-zeolite-PMS system. These findings indicate that the novel rod-like NiCo-phyllosilicate hybrid catalysts had excellent performance in antibiotic degradation.
Collapse
Affiliation(s)
- Yutao Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qing Sun
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- School of Environmental Science and Spatial Infomatics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China
| | - Jiale Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jian Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jiawei Sheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
4
|
Bayode AA, Ore OT, Nnamani EA, Sotunde B, Koko DT, Unuabonah EI, Helmreich B, Omorogie MO. Perovskite Oxides: Syntheses and Perspectives on Their Application for Nitrate Reduction. ACS OMEGA 2024; 9:19770-19785. [PMID: 38737083 PMCID: PMC11080040 DOI: 10.1021/acsomega.4c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Over the decades, the rise in nitrate levels in the ecosystem has posed a serious threat to the continuous existence of humans, fauna, and flora. The deleterious effects of increasing levels of nitrates in the ecosystem have led to adverse health and environmental implications in the form of methemoglobinemia and eutrophication, respectively. Different pathways/routes for the syntheses of perovskites and their oxides were presented in this review. In recent times, electrocatalytic reduction has emerged as the most utilized technique for the conversion of nitrates into ammonia, an industrial feedstock. According to published papers, the efficiency of various perovskites and their oxides used for the electrocatalytic reduction of nitrate achieved a high Faradaic efficiency of 98%. Furthermore, studies published have shown that there is a need to improve the chemical stability of perovskites and their oxides during scale-up applications, as well as their scalability for industrial applications.
Collapse
Affiliation(s)
- Ajibola A. Bayode
- College
of Chemical Engineering, Sichuan University
of Science and Engineering, Zigong 643000, P. R. China
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
| | - Odunayo T. Ore
- Department
of Chemical Sciences, Achiever’s
University, P.M.B. 1030, 341101 Owo, Nigeria
| | - Esther A. Nnamani
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Babajide Sotunde
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Daniel T. Koko
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Emmanuel I. Unuabonah
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
| | - Brigitte Helmreich
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Martins O. Omorogie
- Department
of Chemical Sciences, Faculty of Natural Sciences, Redeemer’s University, P.M.B. 230, 232101 Ede, Nigeria
- Environmental
Science and Technology Unit, African Centre of Excellence for Water
and Environmental Research (ACEWATER), Redeemer’s
University, P.M.B. 230, 232101 Ede, Nigeria
- Chair
of Urban Water Systems Engineering, School
of Engineering and Design, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
5
|
Wang C, Hai X, Li J, Liu Y, Yu X, Zhao Y. Investigation of Ni-Cu-acid multifunctional synergism in NiCu-phyllosilicate catalysts toward the 1,4-butynediol hydrogenation to 1,4-butanediol. Dalton Trans 2023; 52:17981-17992. [PMID: 37982647 DOI: 10.1039/d3dt03076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We studied the Ni-Cu-acid multifunctional synergism in NiCu-phyllosilicate catalysts toward 1,4-butynediol hydrogenation to 1,4-butanediol by varying the reduction temperature, which can activate different bimetal and support interactions. Compared with a monometallic Ni phyllosilicate (phy), which only showed one type of metal species when reduced at ∼750 °C, there are three types of metal species for the bimetallic Ni-Cu-phyllosilicate derived catalysts, namely Cuphy, differentiated Ni, and Niphy. Thorough structure-activity/selectivity correlation investigations showed that, although the Ni9Cu1-P catalyst matrix can produce tiny amounts of differentiated Ni0 species under the induction of reduced Cu0 at R250 condition, it could not form Ni-Cu bimetallic interactions for the collaborative hydrogenation of 1,4-butynediol, and the product stays in the semi hydrogenated state. When the reduction temperature is raised to 500 °C, stable Ni-Cu alloy active sites exist, accompanied by the strong metal support interaction and metal acid effect derived from the intimate contact between the extracted metal sites and the surviving functional phyllosilicate support; these functionalities yield a supreme hydrogenation performance of the R500 sample with a 1,4-butanediol yield larger than 91.2%.
Collapse
Affiliation(s)
- Changzhen Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| | - Xueqing Hai
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| | - Jia Li
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| | - Yupeng Liu
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| | - Xiaosheng Yu
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| | - Yongxiang Zhao
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
6
|
Nie S, Zhai W, Xu Y, He W, Yang J. Flame retardancy and wear resistance of epoxy composites modified by whisker-shaped nickel phyllosilicate and microencapsulated ammonium polyphosphate. RSC Adv 2023; 13:29657-29667. [PMID: 37822659 PMCID: PMC10563033 DOI: 10.1039/d3ra05197h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Whisker-shaped nickel phyllosilicate (NiPS) was synthesized using rod-like nickel-based metal-organic frameworks as the hard templates, and highly efficient flame retardant and wear resistant EP composites were prepared by synergizing with microencapsulated ammonium polyphosphate (MFAPP). The research results indicated that at a total addition amount of 8 wt% and a mass ratio of 2 : 5 for NiPS to MFAPP, the limiting oxygen index of the EP composite was 28.2%, which achieved the V-0 rating in the UL-94 standard. Meanwhile, the peak of heat release rate and total heat release was reduced by 33.9% and 22%, respectively, compared with pure EP. The synergistic system of NiPS and MFAPP promoted the formation of high-quality char layer, preventing the diffusion of heat, oxygen, and combustible gases effectively during combustion of the EP composite. Dry friction test showed that the wear rate of the EP composite was 0.847 × 10-5 mm3 N-1 m-1, which was 87.9% lower than pure EP, indicating a significant improvement in wear resistance. This study provided a promising method for the preparation of high performance epoxy composites with excellent flame retardancy and wear resistance.
Collapse
Affiliation(s)
- Shibin Nie
- School of Public Security and Emergency Management, Anhui University of Science and Technology Hefei 231131 P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei 230051 P. R. China
| | - Wenli Zhai
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 P. R. China
| | - Yuxuan Xu
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 P. R. China
| | - Wei He
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 P. R. China
| | - Jinian Yang
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 P. R. China
| |
Collapse
|
7
|
Supported Ni2P catalysts derived from nickel phyllosilicate with enhanced hydrodesulfurization performance. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Xia X, Ma J, Geng S, Liu F, Yao M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int J Mol Sci 2022; 24:74. [PMID: 36613516 PMCID: PMC9820792 DOI: 10.3390/ijms24010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Shuo Geng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| |
Collapse
|
9
|
Construction of a binary architecture of flower-like nickel phyllosilicate@zinc sulfide towards the robust, wear-resistant and thermal-stable epoxy nanocomposites. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Mohammad Ghadiri A, Farhang M, Hassani P, Salek A, Talesh Ramezani A, Reza Akbarzadeh A. Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Rosli SNA, Abidin SZ, Osazuwa OU, Fan X, Jiao Y. The effect of oxygen mobility/vacancy on carbon gasification in nano catalytic dry reforming of methane: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Facile Synthesis of Micro-Mesoporous Copper Phyllosilicate Supported on a Commercial Carrier and Its Application for Catalytic Hydrogenation of Nitro-Group in Trinitrobenzene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165147. [PMID: 36014388 PMCID: PMC9414592 DOI: 10.3390/molecules27165147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Development of novel Cu-based catalysts has become one of the frontiers in the catalytic production of platform chemicals and in environment protection. However, the known methods of their synthesis are too complicated and result in materials that cannot be used instantly as commercial catalysts. In the present work, a novel material has been synthesized by the facile method of deposition-precipitation using thermal hydrolysis of urea. The conditions for Cu phyllosilicate formation have been revealed (molar ratio urea:copper = 10, 92 °C, 8-11 h). The prepared Cu-based materials were studied by TG-DTA, SEM, TEM, XRD, N2 adsorption and TPR-H2 methods, and it was found that the material involves nanoparticles of micro-mesoporous copper phyllosilicate phase with a chrysocolla-like structure inside the pores of a commercial meso-macroporous silica carrier. The chrysocolla-like phase is first shown to be catalytically active in the selective reduction of the nitro-group in trinitrobenzene to an amino-group with molecular hydrogen. Complete conversion of trinitrobenzene with a high yield of amines has been achieved in short time under relatively mild conditions (170 °C, 1.3 MPa) of nitroarene hydrogenation over a copper catalyst.
Collapse
|
14
|
To DT, Chiang YC, Lee JF, Chen CL, Lin YC. Nitrogen-Doped Co Catalyst Derived from Carbothermal Reduction of Cobalt Phyllosilicate and its Application in Levulinic Acid Hydrogenation to γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03784-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Nickel-based metal—organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Zhang X, Liu M, Chen Y, He J, Wang X, Xie J, Li Z, Chen Z, Fu Y, Xiong C, Wang S. Epoxy resin/hollow glass microspheres composite materials with low dielectric constant and excellent mechanical performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaolin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Man Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Yu Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Jiacheng He
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Xuelin Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Jian Xie
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Ziwei Li
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Zhimin Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Yuheng Fu
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Chuanxi Xiong
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| | - Shan Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan China
| |
Collapse
|
17
|
Suo C, Liu Y, Zhang X, Wang H, Chen B, Fang J, Zhang Z, Chen R, Chen R, Shi C. Embedded Structure of Ni@PSi Catalysts for Steam Reforming of Methane. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cong Suo
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Yang Liu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Xiao Zhang
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Haiyan Wang
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Bingbing Chen
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Jiancong Fang
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Zhenguo Zhang
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Ruoyu Chen
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Rui Chen
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chuan Shi
- Dalian University of Technology School of Chemical Engineering No.2 Linggong Road, Ganjingzi District, 116024 Dalian CHINA
| |
Collapse
|
18
|
Park KS, Kwon JH, Yu JS, Jeong SY, Jo DH, Chung CH, Bae JW. Catalytically stable monodispersed multi-core Ni-Co nanoparticles encapsulated with SiO2 shells for dry reforming of CH4 with CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Levin A, Khrapova E, Kozlov D, Krasilin A, Gusarov V. Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576722003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The morphology and structure of (Ni
x
Mg1−x
)3Si2O5(OH)4 synthetic phyllosilicate nanoscrolls have been studied by means of electron microscopy and X-ray powder diffraction. Scrolling of phyllosilicate layers originates from size differences between octahedral and tetrahedral sheets. This strain-energy-driven process raises a number of questions, including the preferred direction of scrolling (along the a or b axis) and the presence of residual microstrain. In order to clarify these points, the structure of (Ni
x
Mg1−x
)3Si2O5(OH)4 phyllosilicates (x = 0, 0.33, 0.5, 0.67, 1) was first described by a monoclinic Cc (9) unit cell, whose parameters decrease with increasing Ni concentration. The Williamson–Hall plots constructed for x = 0 and 0.67 reveal the absence of microstrain, which suggests that scrolling is an effective means of stress relaxation. The sizes of the crystallites were determined by using Rietveld refinement with predefined needle-like models and fundamental parameter fitting with crystallites of arbitrary form. Both approaches show qualitative and quantitative correlation, in terms of aspect ratio, with electron microscopy data. At the same time, the phyllosilicates studied do not demonstrate one preferred direction of scrolling: instead, there might be a mixture of chirality vectors codirected with the a or b axis, with the proportion altering with Ni concentration.
Collapse
|
20
|
State-of-art modifications of heterogeneous catalysts for CO2 methanation - active sites, surface basicity and oxygen defects. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Keijzer PH, Jongh PE, Jong KP. Utilization of Silver Silicate for the Formation of Highly Dispersed Silver on Silica Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Petra H. Keijzer
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Utrecht University Universiteitsweg 99 3584 CG Utrecht (The Netherlands
| | - Petra E. Jongh
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Utrecht University Universiteitsweg 99 3584 CG Utrecht (The Netherlands
| | - Krijn P. Jong
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Utrecht University Universiteitsweg 99 3584 CG Utrecht (The Netherlands
| |
Collapse
|
22
|
Xu YX, Zhao XG, Dong X, Dai GL. Effect of organic-modified nickel phyllosilicate on the non-isothermal cure kinetics and flame retardancy properties of epoxy composites. RSC Adv 2022; 12:5415-5427. [PMID: 35425577 PMCID: PMC8981419 DOI: 10.1039/d1ra08466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, silane agents were employed as organic silicon to synthesize organic-modified nickel phyllosilicates (NiPS), which were then introduced into epoxy resin (EP) to yield composites. The effects of these organic-modified NiPS on the curing behavior and flammability of epoxy composites were then investigated carefully. Though the added NiPS resulted in the initial temperature shifts to high temperature, the whole curing temperature ranges for EP composites became narrow regarding pure EP. Simultaneously, the activation energy of curing was also decreased, implying the lowered energetic barrier during the whole curing process. For all investigated samples, the overall reaction orders varied negligibly, and the predicted curves fitted well with the DSC thermograms. Finally, the positive influence derived from the presence of these organic-modified NiPS on the enhancement of self-extinguishing ability and limited oxygen index were also discussed, and the solid phase flame retardant mechanism was proposed. The cure behavior of EP/NiPS composites were investigated by non-isothermal DSC. And the curing kinetics for the EP/NiPS composites were described by the autocatalytic equation of the SB model.![]()
Collapse
Affiliation(s)
- Yu-Xuan Xu
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 PR China
| | - Xing-Guo Zhao
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 PR China
| | - Xiang Dong
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 PR China
| | - Guang-Long Dai
- School of Safety Science and Engineering, Anhui University of Science and Technology Huainan 232001 PR China
| |
Collapse
|
23
|
Sun L, Li S, Gao Z, Gao S, Gao W, Cheng X, Shang N, Gao Y, Wang C. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over cobalt nanoparticle inlaid cobalt phyllosilicate. Dalton Trans 2022; 51:3096-3103. [PMID: 35113092 DOI: 10.1039/d1dt03992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of biofuels and chemicals from renewable biomass is highly desirable to replace petrochemicals. Hydrogenolysis of biomass derived 5-hydroxymethylfurfural (HMF) is a promising way to obtain furanic fuels. In this paper, we describe the preparation of a CoSi-PS catalyst derived from cobalt phyllosilicate using a silica sol as the silica source. CoSi-PS exhibited excellent catalytic performance for the hydrogenolysis reaction of HMF to produce liquid 2,5-dimethylfuran (DMF) biofuel. 100% conversion of HMF and 97.5% selectivity for DMF were achieved at 170 °C and 1.5 MPa H2 for 4 h, which was superior to most of the reported catalysts. The excellent performance can be attributed to the strong interactions between the metal and support, highly dispersed cobalt nanoparticles and the Lewis acid sites induced by the coordinated unsaturated Co(II) sites in phyllosilicate.
Collapse
Affiliation(s)
- Lixia Sun
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Shangyang Li
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhuoyou Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Wei Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Xiang Cheng
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yongjun Gao
- College of Chemical and Environmental Science, Hebei University, Baoding 071000, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
24
|
Sarkar D, Ganguli S, Mondal A, Mahalingam V. Boosting Surface Reconstruction for the Oxygen Evolution Reaction: A Combined Effect of Heteroatom Incorporation and Anion Etching in Cobalt Silicate Precatalyst. ChemElectroChem 2021. [DOI: 10.1002/celc.202101140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debashrita Sarkar
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Sagar Ganguli
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
- Department of Chemistry Ångström Laboratory, Molecular Biomimetics, Uppsala University 75120 Uppsala Sweden
| | - Ayan Mondal
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| | - Venkataramanan Mahalingam
- Nanomaterials Research Lab, Department of Chemical Science Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
25
|
Dai H, Zhu Y, Xiong S, Xiao X, Huang L, Deng J, Zhou C. Dry Reforming of Methane over Ni/MgO@Al Catalysts with Unique Features of Sandwich Structure. ChemistrySelect 2021. [DOI: 10.1002/slct.202102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Dai
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- Department of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yongqing Zhu
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Siqi Xiong
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Xin Xiao
- Department of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Lihong Huang
- College of Materials and Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Jie Deng
- College of Pharmacy and Bioengineering Chengdu University Chengdu 610106 China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 China
| |
Collapse
|
26
|
Effect of phosphorus-modified nickel phyllosilicates on the thermal stability, flame retardancy and mechanical property of epoxy composites. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02843-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Chen Y, Wu X, Liu Q, He M, Bai H. Ni-Foam Structured Ni-Phyllosilicate Ensemble as an Efficient Monolithic Catalyst for CO2 Methanation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Li H, Chen Y, Liu S, Liu Q. Enhancement of hydrothermal synthesis of FDU-12-derived nickel phyllosilicate using double accelerators of ammonium fluoride and urea for CO2 methanation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Chen Y, Liu Q. Synthesis and Regeneration of Ni-Phyllosilicate Catalysts Using a Versatile Double-Accelerator Method: A Comprehensive Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
30
|
Sun Y, Ma Q, Ge Q, Sun J. Tunable Synthesis of Ethanol or Methyl Acetate via Dimethyl Oxalate Hydrogenation on Confined Iron Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannan Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Du H, Ma X, Jiang M, Yan P, Zhao Y, Conrad Zhang Z. Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts 2021. [DOI: 10.3390/catal11040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The greenhouse effect is leading to global warming and destruction of the ecological environment. The conversion of carbon dioxide and methane greenhouse gases into valuable substances has attracted scientists’ attentions. Dry reforming of methane (DRM) alleviates environmental problems and converts CO2 and CH4 into valuable chemical substances; however, due to the high energy input to break the strong chemical bonds in CO2 and CH4, non-thermal plasma (NTP) catalyzed DRM has been promising in activating CO2 at ambient conditions, thus greatly lowering the energy input; moreover, the synergistic effect of the catalyst and plasma improves the reaction efficiency. In this review, the recent developments of catalytic DRM in a dielectric barrier discharge (DBD) plasma reactor on Ni-based catalysts are summarized, including the concept, characteristics, generation, and types of NTP used for catalytic DRM and corresponding mechanisms, the synergy and performance of Ni-based catalysts with DBD plasma, the design of DBD reactor and process parameter optimization, and finally current challenges and future prospects are provided.
Collapse
|
33
|
Liao L, Chen L, Ye RP, Tang X, Liu J. Robust nickel silicate catalysts with high Ni loading for CO 2 methanation. Chem Asian J 2021; 16:678-689. [PMID: 33453068 DOI: 10.1002/asia.202001384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/29/2020] [Indexed: 01/31/2023]
Abstract
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS-X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS-X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g-1 h-1 . The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.
Collapse
Affiliation(s)
- Lin Liao
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Lidong Chen
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, P. R. China
| | - Run-Ping Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Xiaolu Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China.,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, UK
| |
Collapse
|
34
|
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.
Collapse
|
35
|
Yang J, Xu Y, Su C, Nie S, Li Z. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2007-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Qiao Y, Theyssen N, Spliethoff B, Folke J, Weidenthaler C, Schmidt W, Prieto G, Ochoa-Hernández C, Bill E, Ye S, Ruland H, Schüth F, Leitner W. Synthetic ferripyrophyllite: preparation, characterization and catalytic application. Dalton Trans 2021; 50:850-857. [PMID: 33434245 DOI: 10.1039/d0dt03125a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sheet silicates, also known as phyllosilicates, contain parallel sheets of tetrahedral silicate built up by [Si2O5]2- entities connected through intermediate metal-oxygen octahedral layers. The well-known minerals talc and pyrophyllite are belonging to this group based on magnesium and aluminium, respectively. Surprisingly, the ferric analogue rarely occurs in nature and is found in mixtures and conglomerates with other materials only. While partial incorporation of iron into pyrophyllites has been achieved, no synthetic protocol for purely iron-based pyrophyllite has been published yet. Here we report about the first artificial synthesis of ferripyrophyllite under exceptional mild conditions. A similar ultrathin two-dimensional (2D) nanosheet morphology is obtained as in talc or pyrophyllite but with iron(iii) as a central metal. The high surface material exhibits a remarkably high thermostability. It shows some catalytic activity in ammonia synthesis and can serve as catalyst support material for noble metal nanoparticles.
Collapse
Affiliation(s)
- Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dry reforming of methane (DRM) reaction has drawn much interest due to the reduction of greenhouse gases and production of syngas. Coking and sintering have hindered the large-scale operations of Ni-based catalysts in DRM reactions at high temperatures. Smart designs of Ni-based catalysts are comprehensively summarized in fourth aspects: surface regulation, oxygen defects, interfacial engineering, and structural optimization. In each part, details of the designs and anti-deactivation mechanisms are elucidated, followed by a summary of the main points and the recommended strategies to improve the catalytic performance, energy efficiency, and utilization rate.
Collapse
|
38
|
Tsou YJ, To TD, Chiang YC, Lee JF, Kumar R, Chung PW, Lin YC. Hydrophobic Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54851-54861. [PMID: 33232108 DOI: 10.1021/acsami.0c17612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A reduction-silylation-reduction method was developed to synthesize hydrophobic Cu catalysts derived from Cu phyllosilicates (CuPS). Triethoxy(octyl)silane (OTS) was used as the coupling agent. The OTS-grafted, reduced CuPS catalysts were applied in the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). The most promising catalyst was synthesized by reducing CuPS at a high temperature (350 °C for 3 h), followed by OTS grafting, and then by repeating the previous reduction step. High LA conversion (95.7%), GVL yield (85.2%), and stability (3 cycles with a 7.5% loss of initial activity) were obtained at a mild reaction condition (130 °C with a H2 pressure of 12 bar). A high reduction temperature not only leads to a low oxidation state of Cu species but also suppresses the formation of silylation-induced acids. Moreover, the intrinsic activity of a reduced CuPS catalyst was nearly intact after subjecting to silylation and the second reduction treatment.
Collapse
Affiliation(s)
- Ya-Ju Tsou
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Thien Dien To
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Yu-Chia Chiang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Raju Kumar
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Po-Wen Chung
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| |
Collapse
|
39
|
Zanelli D, Candotto Carniel F, Garrido M, Fortuna L, Nepi M, Cai G, Del Casino C, Vázquez E, Prato M, Tretiach M. Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1877. [PMID: 32961680 PMCID: PMC7560101 DOI: 10.3390/nano10091877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
Products containing graphene-related materials (GRMs) are becoming quite common, raising concerns for environmental safety. GRMs have varying effects on plants, but their impact on the sexual reproduction process is largely unknown. In this study, the effects of few-layer graphene (FLG) and a similarly layered phyllosilicate, muscovite mica (MICA), were tested in vivo on the reproductive structures, i.e., pollen and stigma, of Cucurbita pepo L. ssp. pepo 'greyzini' (summer squash, zucchini). Pollen was exposed to FLG or MICA, after careful physical-chemical characterization, at concentrations of 0.5 and 2 mg of nanomaterial (NM) per g of pollen for up to six hours. Following this, pollen viability was tested. Stigmas were exposed to FLG or MICA for three hours and then analyzed by environmental scanning electron microscopy to verify possible alterations to their surface. Stigmas were then hand-pollinated to verify the effects of the two NMs on pollen adhesion and in vivo pollen germination. FLG and MICA altered neither pollen viability nor the stigmatic surface. However, both NMs equivalently decreased pollen adhesion and in vivo germination compared with untreated stigmas. These effects deserve further attention as they could impact on production of fruits and seeds. Importantly, it was shown that FLG is as safe as a naturally occurring nanomaterial.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
| | - Lorenzo Fortuna
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Ester Vázquez
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005 Ciudad Real, Spain;
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| |
Collapse
|
40
|
Yang JN, Li ZY, Xu YX, Nie SB, Liu Y. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02250-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Ciotonea C, Hammi N, Dhainaut J, Marinova M, Ungureanu A, El Kadib A, Michon C, Royer S. Phyllosilicate‐derived Nickel‐cobalt Bimetallic Nanoparticles for the Catalytic Hydrogenation of Imines, Oximes and N‐heteroarenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carmen Ciotonea
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Univ. Lille, CNRS, INRA Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Department Euromed Research Center, Engineering Division Euro-Med University of Fes (UEMF) Route de Meknes, Rond-point de Bensouda 30070 Fès Morocco
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Maya Marinova
- Univ. Lille, CNRS, INRA Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Adrian Ungureanu
- “Gheorghe Asachi” Technical University of Iasi Faculty of Chemical Engineering and Environmental Protection 73 D. Mangeron Bvd. 700050 Iasi Romania
| | - Abdelkrim El Kadib
- Department Euromed Research Center, Engineering Division Euro-Med University of Fes (UEMF) Route de Meknes, Rond-point de Bensouda 30070 Fès Morocco
| | - Christophe Michon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Université de Strasbourg, Université de Haute-Alsace Ecole Européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| |
Collapse
|
42
|
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO 2 Reforming with Methane Reaction over CeO 2-Modified Ni@SiO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance catalysts for the low temperature CO2 reforming with methane (CRM) reaction is a challenge due to the occurrences of metal sintering and carbon deposition. In this study, we synthesized CeO2 modified Ni@SiO2 catalysts with excellent properties of sintering-resistance and low carbon deposition for high performance low temperature CRM. The Ni@SiO2-CeO2 catalysts displayed a size effect from tiny Ni nanoparticles to enhance CRM performance and a confinement effect from silica encapsulation to limit Ni sintering and exhibited oxygen storage capacity from ceria to reduce carbon deposition. Performance and characterization results revealed that the Ni@SiO2-CeO2-W catalyst with smaller ceria size exhibited higher performance and lower carbon deposition than the Ni@SiO2-CeO2-E catalyst with bigger ceria size, because the smaller ceria nanoparticles activated more CO2. This work provided a simple strategy to deposit small sized ceria on the Ni@SiO2 catalyst surface for the performance enhancement of low temperature CRM.
Collapse
Affiliation(s)
- Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weishu Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
43
|
Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The past two decades have been marked by an increased interest in the synthesis and the properties of geoinspired hydrosilicate nanoscrolls and nanotubes. The present review considers three main representatives of this group: halloysite, imogolite and chrysotile. These hydrosilicates have the ability of spontaneous curling (scrolling) due to a number of crystal structure features, including the size and chemical composition differences between the sheets, (or the void in the gibbsite sheet and SiO2 tetrahedron, in the case of imogolite). Mineral nanoscrolls and nanotubes consist of the most abundant elements, like magnesium, aluminium and silicon, accompanied by uncontrollable amounts of impurities (other elements and phases), which hinder their high technology applications. The development of a synthetic approach makes it possible to not only to overcome the purity issues, but also to enhance the chemical composition of the nanotubular particles by controllable cation doping. The first part of the review covers some principles of the cation doping approach and proposes joint criteria for the semiquantitative prediction of morphological changes that occur. The second part focuses on some doping-related properties and applications, such as morphological control, uptake and release, magnetic and mechanical properties, and catalysis.
Collapse
|
44
|
Daoura O, El Chawich G, Boutros M, El Hassan N, Massiani P, Ersen O, Baaziz W, Launay F. Aqueous nickel(II) hydroxycarbonate instead of nickel(0) colloids as precursors of stable Ni-silica based catalysts for the dry reforming of methane. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|