1
|
Nachimuthu S, Xie GC, Jiang JC. Unraveling the catalytic performance of RuO 2(1 1 0) for highly-selective ethylene production from methane at low temperature: Insights from first-principles and microkinetic simulations. J Colloid Interface Sci 2025; 678:992-1003. [PMID: 39270399 DOI: 10.1016/j.jcis.2024.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Despite significant progress in low-temperature methane (CH4) activation, commercial viability, specifically obtaining high yields of C1/C2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH4 utilization. Herein, we employ first-principles density functional theory (DFT) and microkinetics simulations to investigate the CH4 activation and the feasibility of its conversion to ethylene (C2H4) on the RuO2 (1 1 0) surface. The CH activation and CH4 dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO2 (1 1 0) surface exhibits high reactivity in CH4 activation (Ea = 0.60 eV), with CH3 and CH2 are the predominant species, and CH2 being the most mobile intermediate on the surface. Consequently, self-coupling of CH2* species via CC coupling occurs more readily, yielding C2H4, a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C2H4 can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH4 activation can occur at temperatures below 200 K, and C2H4 can be desorbed at room temperature. Further, the selectivity analysis predicts that C2H4 is the major product at low temperatures (300-450 K) with 100 % selectivity, then competes with formaldehyde at intermediate temperatures in the CH4 conversion over RuO2 (1 1 0) surface. The present findings suggest that the RuO2 (1 1 0) surface is a potential catalyst for facilitating ethylene production under mild conditions.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Guan-Cheng Xie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Jayan R, Islam MM. Understanding Catalytic Mechanisms and Cathode Interface Kinetics in Nonaqueous Mg-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45895-45904. [PMID: 37733269 DOI: 10.1021/acsami.3c09599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We leverage first-principles density functional theory (DFT) calculations to understand the electrocatalytic processes in Mg-CO2 batteries, considering ruthenium oxide (RuO2) as an archetypical cathode catalyst. Our goal is to establish a mechanistic framework for understanding the charging and discharging reaction pathways and their influence on overpotentials. On the RuO2 (211) surface, we found reaction initiation through thermodynamically favorable adsorption of Mg followed by interactions with CO2. However, we found that the formation of carbonate (CO32-) and oxalate (C2O42-) intermediates via the activation of CO2 at the catalytic site is thermodynamically unfavorable. We predict that MgC2O4 will form as the discharge product due to its lower overpotential compared to MgCO3. However, MgC2O4 is thermodynamically unstable and is expected to decompose into MgCO3, MgO, and C as final discharge products. Through Bader charge analysis, we investigate the covalent interactions between intermediates and catalyst sites. Moreover, we study the electrochemical free energy profiles of the most favorable reaction pathways and determine discharge and charge overpotentials of 1.30 and 1.35 V, respectively. Our results underscore the importance of catalyst design for the cathode material to overcome performance limitations in nonaqueous Mg-CO2 batteries.
Collapse
Affiliation(s)
- Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Zhao Y, Xi C, Gao S, Wang Y, Wang H, Sun P, Wu Z. Ru-based monolithic catalysts for the catalytic oxidation of chlorinated volatile organic compounds. RSC Adv 2023; 13:7037-7044. [PMID: 36874937 PMCID: PMC9977393 DOI: 10.1039/d2ra07823f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
A series of cordierite monolithic catalysts with Ru species supported on different available low-cost carriers were prepared and investigated for the elimination of CVOCs. The results suggest that the monolithic catalyst with Ru species supported on anatase TiO2 carrier with abundant acidic sites exhibited the desired catalytic activity for DCM oxidation with the T 90% value of 368 °C. In addition, a pseudo-boehmite sol used as binder was introduced into the preparation of the monolithic catalysts to further improve the adhesion between the powder catalysts and cordierite honeycomb carrier. The results suggest that although the T 50% and T 90% of the Ru/TiO2/PB/Cor shifted to higher temperature of 376 and 428 °C, the weight loss of the coating for the Ru/TiO2/PB/Cor catalyst was improved and decreased to 6.5 wt%. Also, the as-obtained Ru/TiO2/PB/Cor catalyst exhibited ideal catalytic properties for the abatement of ethyl acetate and ethanol, indicating that the catalyst can meet the demand for the treatment of actual multi-component industrial gas.
Collapse
Affiliation(s)
- Yemin Zhao
- Department of Environmental Engineering, Zhejiang University Hangzhou 310058 P. R. China.,Zhejiang Tianlan Environmental Protection Technology Co., Ltd. Hangzhou 311202 China .,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Chao Xi
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd. Hangzhou 311202 China .,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Shan Gao
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd. Hangzhou 311202 China .,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Yuejun Wang
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd. Hangzhou 311202 China .,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University Hangzhou 310058 P. R. China.,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University Hangzhou 310058 P. R. China.,Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control 866 Yuhangtang Road Hangzhou 310058 P. R. China
| |
Collapse
|
4
|
Zhang W, Sun W, Zhang Y, Yu D, Piao W, Wei H, Liu X, Sun C. Effect of inorganic salt on the removal of typical pollutants in wastewater by RuO 2/TiO 2 via catalytic wet air oxidation. CHEMOSPHERE 2023; 312:137194. [PMID: 36372337 DOI: 10.1016/j.chemosphere.2022.137194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The treatment of high-salinity and high-organic wastewater is a tough task, with the removal of organic matter and the separation of salts often mutually restricting. Catalytic wet air oxidation (CWAO) coupled desalination technology (membrane distillation (MD), membrane bioreactor (MBR), ultrafiltration (UF), nanofiltration (NF), etc.) provides an effective method to simultaneously degrade the high-salinity (via desalination) and high-organic matters (via CWAO) in wastewater. In this work, five kinds of RuO2/TiO2 catalysts with different calcination temperatures were prepared for CWAO of maleic acid wastewater with a theoretical chemical oxygen demand (COD) value of 20,000 mg L-1. RuO2/TiO2 series catalysts demonstrated prominent salt resistance, with more than 80% TOC removal rates in the CWAO system containing 5 wt% Na2SO4; while RuO2/TiO2-350 showed the best degradation performance in both non-salinity and Na2SO4-containing conditions. Multiple characterization techniques, such as XRD, BET, XPS, NH3-TPD and TEM etc., verified the physicochemical structure of RuO2/TiO2 catalysts, and their influence on the degradation of pollutants. The calcination temperature was found to have a direct impact on the specific surface area, pore volume, oxygen vacancies and acid sites of catalysts, which in turn affected the ultimate catalytic activity. Furthermore, we also investigated the performance of the RuO2/TiO2-350 catalyst for the treatment of acids, alcohols and aromatic compounds with the addition of NaCl or Na2SO4, proving its good universality and excellent salt resistance in saline wastewater. Meanwhile, the relationship between the structure of three types of organic compounds and the degradation effect in the CWAO system was also explored.
Collapse
Affiliation(s)
- Wanying Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yanan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Graduate School of North China Electric Power University, Beijing, 102206, PR China
| | - Danyang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Weiling Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| |
Collapse
|
5
|
Sun W, Lv H, Ma L, Tan X, Jin C, Wu H, Chen L, Liu M, Wei H, Sun C. Use of catalytic wet air oxidation (CWAO) for pretreatment of high-salinity high-organic wastewater. J Environ Sci (China) 2022; 120:105-114. [PMID: 35623764 DOI: 10.1016/j.jes.2021.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/15/2023]
Abstract
Catalytic wet air oxidation (CWAO) coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater. Chloride widely occurs in natural and wastewaters, and its high content jeopardizes the efficacy of Advanced oxidation process (AOPs). Thus, a novel chlorine ion resistant catalyst B-site Ru doped LaFe1-xRuxO3-δ in CWAO treatment of chlorine ion wastewater was examined. Especially, LaFe0.85Ru0.15O3-δ was 45.5% better than that of the 6%RuO2@TiO2 (commercial carrier) on total organic carbon (TOC) removal. Also, doped catalysts LaFe1-xRuxO3-δ showed better activity than supported catalysts RuO2@LaFeO3 and RuO2@TiO2 with the same Ru content. Moreover, LaFe0.85Ru0.15O3-δ has novel chlorine ion resistance no matter the concentration of Cl- and no Ru dissolves after the reaction. X-ray diffraction (XRD) refinement, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) measurements verified the structure of LaFe0.85Ru0.15O3-δ. Kinetic data and density functional theory (DFT) proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions. The existence of Fe in LaFe0.85Ru0.15O3-δ could adsorb chlorine ion (catalytic activity inhibitor), which can protect the Ru site and other active oxygen species to exert catalytic activity. This work is essential for the development of chloride-resistant catalyst in CWAO.
Collapse
Affiliation(s)
- Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongxia Lv
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiangdong Tan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiling Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
6
|
Long Y, Meng Q, Chen M, Luo X, Dai Q, Lu H, Wu Z, Weng X. Selective Ru Adsorption on SnO 2/CeO 2 Mixed Oxides for Efficient Destruction of Multicomponent Volatile Organic Compounds: From Laboratory to Practical Possibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9762-9772. [PMID: 35734922 DOI: 10.1021/acs.est.2c02925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ru-based catalysts have been extensively employed for the catalytic destruction of chlorinated volatile organic compounds (VOCs), but their versatility for other routine VOCs' destruction has been less explored. Herein, we show that Ru-decorated SnO2/CeO2 mixed oxides can sustain H2O and HCl poisonings and are endowed with extraordinary versatility for a wide range of VOCs' destruction. Selective adsorption of Ru on the cassiterite SnO2 and CeO2 nanorods through a Coulomb force can rationally tune the oxidation and dechlorination centers on decorated catalysts, where the epitaxial growth of RuOx on top of SnO2 is endowed with excellent dechlorination ability and that on CeO2 is functional as an oxidation center; the latter could also activate H2O to provide sufficient H protons for HCl formation. Our developed Ru/SnO2/CeO2 catalyst can steadily destruct mono-chlorobenzene, ortho-dichlorobenzene, trichloroethylene, dichloromethane, epichlorohydrin, N-hexane, ethyl acetate, toluene, and their mixtures at an optimum temperature of 300 °C, and its monolithic form is also functional at this temperature with few dioxins being detected in the off-gas. Our results imply that the Ru-decorated SnO2/CeO2 catalyst can meet the demands of regenerative catalytic oxidation for the treatment of a wide range of VOCs from industrial exhausts.
Collapse
Affiliation(s)
- Yunpeng Long
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qingjie Meng
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Meiling Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xueqing Luo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hanfeng Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaole Weng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
7
|
Ruthenium isomorphic substitution into manganese oxide octahedral molecular sieve OMS-2: Comparative physic-chemical and catalytic studies of Ru versus abundant metal cationic dopants. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Adamska K, Smykała S, Zieliński S, Szymański D, Stelmachowski P, Kotarba A, Okal J, Kępiński L. TiO2 Supported RuRe Nanocatalysts for Soot Oxidation: Effect of Re and the Support Nature. Catal Letters 2022. [DOI: 10.1007/s10562-022-04066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Heiba HF, Bullen JC, Kafizas A, Petit C, Skinner SJ, Weiss D. The determination of oxidation rates and quantum yields during the photocatalytic oxidation of As(III) over TiO2. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Refat MS, Saad HA, Gobouri AA, Alsawat M, Belgacem K, Majrashi BM, Adam AMA. RuO2 Nanostructures from Ru(III) Complexes As a New Smart Nanomaterials for Using in the Recycling and Sustainable Wastewater Treatment: Synthesis, Characterization, and Catalytic Activity in the Hydrogen Peroxide Decomposition. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Gong Y, Liu R, Jiang L, Peng A, Xu C, Lu X, Ma R, Fu Y, Zhu W, Wang S, Zhou L. Catalyst Development for HCl Oxidation to Cl2 in the Fluorochemical Industry. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yufeng Gong
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Ruixin Liu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Lingyan Jiang
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Anna Peng
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Chunhui Xu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Xinqing Lu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Rui Ma
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Yanghe Fu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| | - Shuhua Wang
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| | - Liyang Zhou
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| |
Collapse
|
12
|
Zhao W, Shi J, Lin M, Sun L, Su H, Sun X, Murayama T, Qi C. Praseodymia–titania mixed oxide supported gold as efficient water gas shift catalyst: modulated by the mixing ratio of oxides. RSC Adv 2022; 12:5374-5385. [PMID: 35425532 PMCID: PMC8981221 DOI: 10.1039/d1ra08572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Modulating the active sites for controllable tuning of the catalytic activity has been the goal of much research, however, this remains challenging. The O vacancy is well known as an active site in reducible oxides. To modify the activity of O vacancies in praseodymia, we synthesized a series of praseodymia–titania mixed oxides. Varying the Pr : Ti mole ratio (2 : 1, 1 : 2, 1 : 1, 1 : 4) allows us to control the electronic interactions between Au, Pr and Ti cations and the local chemical environment of the O vacancies. These effects have been studied study by X-ray photoelectron spectroscopy (XPS), CO diffuse reflectance Fourier transform infrared spectroscopy (CO-DRIFTS) and temperature-programmed reduction (CO-TPR, H2-TPR). The water gas shift reaction (WGSR) was used as a benchmark reaction to test the catalytic performance of different praseodymia–titania supported Au. Among them, Au/Pr1Ti2Ox was identified to exhibit the highest activity, with a CO conversion of 75% at 300 °C, which is about 3.7 times that of Au/TiO2 and Au/PrOx. The Au/Pr1Ti2Ox also exhibited excellent stability, with the conversion after 40 h time-on-stream at 300 °C still being 67%. An optimal ratio of Pr content (Pr : Ti 1 : 2) is necessary for improving the surface oxygen mobility and oxygen exchange capability, a higher Pr content leads to more O vacancies, however with lower activity. This study presents a new route for modulating the active defect sites in mixed oxides which could also be extended to other heterogeneous catalysis systems. Schematic illustration of H2O activation on the Pr-TiOx support and the following reaction with CO in the Au–oxide interface.![]()
Collapse
Affiliation(s)
- Weixuan Zhao
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Shi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Mingyue Lin
- Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science and Technology, Shanghai 200237, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Libo Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huijuan Su
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xun Sun
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Toru Murayama
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
- Research Center for Gold Chemistry, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
- Research Center for Hydrogen Energy-based Society, Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Caixia Qi
- Shandong Applied Research Centre of Gold Nanotechnology, School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
13
|
Zhao W, Li Y, Shen W. Tuning the shape and crystal phase of TiO 2 nanoparticles for catalysis. Chem Commun (Camb) 2021; 57:6838-6850. [PMID: 34137748 DOI: 10.1039/d1cc01523k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of TiO2 nanoparticles with tunable shape and crystal phase has attracted considerable attention for the design of highly efficient heterogeneous catalysts. Tailoring the shape of TiO2, in the crystal phases of anatase, rutile, brookite and TiO2(B), allows tuning of the atomic configurations on the dominantly exposed facets for maximizing the active sites and regulating the reaction route towards a specific channel for achieving high selectivity. Moreover, the shape and crystal phase of TiO2 nanoparticles alter their interactions with metal species, which are commonly termed as strong metal-support interactions involving interfacial strain and charge transfer. On the other hand, metal particles, clusters and single atoms interact differently with TiO2, because of the variation of the electronic structure, while the surface of TiO2 determines the interfacial bonding via a geometric effect. The dynamic behavior of the metal-titania interfaces, driven by the chemisorption of the reactive molecules at elevated temperatures, also plays a decisive role in elaborating the structure-reactivity relationship.
Collapse
Affiliation(s)
- Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
14
|
Xu X, Liu L, Tong Y, Fang X, Xu J, Jiang DE, Wang X. Facile Cr3+-Doping Strategy Dramatically Promoting Ru/CeO2 for Low-Temperature CO2 Methanation: Unraveling the Roles of Surface Oxygen Vacancies and Hydroxyl Groups. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05468] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yunyan Tong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junwei Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
15
|
Sudarsanam P, Köckritz A, Atia H, Amin MH, Brückner A. Synergistic Nanostructured MnO
x
/TiO
2
Catalyst for Highly Selective Synthesis of Aromatic Imines. ChemCatChem 2021. [DOI: 10.1002/cctc.202001870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Putla Sudarsanam
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
- Catalysis and Inorganic Chemistry Division CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Angela Köckritz
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Hanan Atia
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | | | - Angelika Brückner
- Leibniz Institute for Catalysis e.V. (LIKAT) Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
16
|
pH Sensitivity Estimation in Potentiometric Metal Oxide pH Sensors Using the Principle of Invariance. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/5551259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A numerically solvable engineering model has been proposed that predicts the sensitivity of metal oxide- (MOX-) based potentiometric pH sensors. The proposed model takes into account the microstructure and crystalline structure of the MOX material. The predicted pH sensitivities are consistent with experimental results with the difference below 6% across three MOX (RuO2, TiO2, and Ta2O5) analysed. The model distinguishes the performance of different MOX phases by the appropriate choice of surface hydroxyl site densities and dielectric constants, making it possible to estimate the performance of MOX electrodes fabricated through different high-temperature and low-temperature annealing methods. It further addresses the problem, cited by theoreticians, of independently determining the C1 inner Helmholtz capacitance parameter while applying the triple-layer model to pH sensors. This is done by varying the C1 capacitance parameter until an invariant pH sensitivity across different electrolyte ionic strengths is obtained. This invariance point identifies the C1 capacitance. The corresponding pH sensitivity is the characteristic sensitivity of MOX. The model has been applied across different types of metal oxides, namely, expensive platinum group oxides (RuO2) and cheaper nonplatinum group MOX (TiO2 and Ta2O5). High temperature annealed, RuO2 produced a high pH sensitivity of 59.1082 mV/pH, while TiO2 and Ta2O5 produced sub-Nernstian sensitivities of 30.0011 and 34.6144 mV/pH, respectively. Low temperature annealed, TiO2 and Ta2O5 produced Nernstian sensitivities of 59.1050 and 59.1081 mV/pH, respectively, illustrating the potential of using cheaper nonplatinum group MOx as alternative sensor electrode materials. Separately, the usefulness of relatively less investigated, cheap, and readily available MOX, viz. Al2O3, as the electrode material was analysed. Low-temperature-annealed Al2O3 with a Nernstian sensitivity of 59.1050 mV/pH can be considered as a potential electrode material. The proposed engineering model can be used as a preliminary prediction mechanism for choosing potentially cheaper alternative sensor electrode materials.
Collapse
|
17
|
Yanushevska OI, Vlasenko NV, Telbis GM, Leonenko EV, Didenko OZ, Prozorovich VG, Ivanets AI, Dontsova TA. Acid–base and photocatalytic properties of TiO2-based nanomaterials. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Effects of the Support-Crystal Size on the Catalytic Performance of RuO2/TiO2 in the Deacon Process. Catal Letters 2021. [DOI: 10.1007/s10562-020-03493-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Liu Y, Li S, Lu X, Ma R, Fu Y, Wang S, Zhou L, Zhu W. Insights into the sintering resistance of RuO2/TiO2–SiO2 in the Deacon process: role of SiO2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01023a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RuO2 nanoparticles are still formed on the surface of TiO2 to prevent the thermal sintering because of the geometric effects of SiO2 and the resultant RuO2/TiO2–SiO2 catalyst has an improved stability in the Deacon process.
Collapse
Affiliation(s)
- Yupei Liu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| | - Siyao Li
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| | - Xinqing Lu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| | - Rui Ma
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| | - Yanghe Fu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| | - Shuhua Wang
- National Engineering Technology Research Center of Fluoro-Materials
- Zhejiang Juhua Technology Center Co., Ltd
- 324004 Quzhou
- People's Republic of China
| | - Liyang Zhou
- National Engineering Technology Research Center of Fluoro-Materials
- Zhejiang Juhua Technology Center Co., Ltd
- 324004 Quzhou
- People's Republic of China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals
- Institute of Advanced Fluorine-Containing Materials
- Zhejiang Normal University
- 321004 Jinhua
- People's Republic of China
| |
Collapse
|
20
|
Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A set of physicochemical methods, including X-ray photoelectron spectroscopy (XPS), X-ray diraction, electron microscopy and X-ray absorption spectroscopy, was applied to study Pt/TiO2 catalysts prepared by impregnation using a commercial TiO2-P25 support and a support produced by pulsed laser ablation in liquid (PLA). The Pt/TiO2-PLA catalysts showed increased thermal stability due to the localization of the highly dispersed platinum species at the intercrystalline boundaries of the support particles. In contrast, the Pt/TiO2-P25 catalysts were characterized by uniform distributionof the Pt species over the support. Analysis of Pt4f XP spectra shows that oxidized Pt2+ and Pt4+ species are formed in the Pt/TiO2-P25 catalysts, while the platinum oxidation state in the Pt/TiO2-PLA catalysts is lower due to stronger interaction of the active component with the support due to stronginteraction via Pt-O-Ti bonds. The Pt4f XP spectra of the samples after reaction show Pt2+ and metallic platinum, which is the catalytically active species. The study of the catalytic properties in ammonia oxidation showed that, unlike the catalysts prepared with a commercial support, the Pt/TiO2-PLA samples show higher stability during catalysis and significantly higher selectivity to N2 in a wide temperature range of 200–400 C.
Collapse
|
21
|
López‐Vásquez A, Suárez‐Escobar A, Ramírez JH. Effect of Calcination Temperature on the Photocatalytic Activity of Nanostructures Synthesized by Hydrothermal Method from Black Mineral Sand. ChemistrySelect 2020. [DOI: 10.1002/slct.201903560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A. López‐Vásquez
- Department of Chemical EngineeringUniversidad Nacional de Colombia Campus La Nubia, km 7 via al Aeropuerto Manizales 170003 Colombia
| | - Andrés Suárez‐Escobar
- Facultad de Ciencias Naturales e IngenieríaUniversidad de Bogotá Jorge Tadeo Lozano Bogotá 110311 Colombia
| | - J. Herney Ramírez
- Chemical and Environmental Engineering DepartmentUniversidad Nacional de Colombia Bogotá 111321 Colombia
| |
Collapse
|