1
|
Tabakova T. State of the Art and Challenges in Complete Benzene Oxidation: A Review. Molecules 2024; 29:5484. [PMID: 39598873 PMCID: PMC11597454 DOI: 10.3390/molecules29225484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Increased levels and detrimental effects of volatile organic compounds (VOCs) on air quality and human health have become an important issue in the environmental field. Benzene is classified as one of the most hazardous air pollutants among non-halogenated aromatic hydrocarbons with toxic, carcinogenic, and mutagenic effects. Various technologies have been applied to decrease harmful emissions from various sources such as petrochemistry, steel manufacturing, organic chemical, paint, adhesive, and pharmaceutical production, vehicle exhausts, etc. Catalytic oxidation to CO2 and water is an attractive approach to VOC removal due to high efficiency, low energy consumption, and the absence of secondary pollution. However, catalytic oxidation of the benzene molecule is a great challenge because of the extraordinary stability of its six-membered ring structure. Developing highly efficient catalysts is of primary importance for effective elimination of benzene at low temperatures. This review aims to summarize and discuss some recent advances in catalyst composition and preparation strategies. Advantages and disadvantages of using noble metal-based catalysts and transition metal oxide-based catalysts are addressed. Effects of some crucial factors such as catalyst support nature, metal particle size, electronic state of active metal, redox properties, reactivity of lattice oxygen and surface adsorbed oxygen on benzene removal are explored. Thorough elucidation of reaction mechanisms in benzene oxidation is a prerequisite to develop efficient catalysts. Benzene oxidation mechanisms are analyzed based on in situ catalyst characterization, reaction kinetics, and theoretical simulation calculations. Considering the role of oxygen vacancies in improving catalytic performance, attention is given to oxygen defect engineering. Catalyst deactivation due to coexistence of water vapor and other pollutants, e.g., sulfur compounds, is discussed. Future research directions for rational design of catalysts for complete benzene oxidation are provided.
Collapse
Affiliation(s)
- Tatyana Tabakova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Zhou J, Zheng Y, Zhang G, Zeng X, Xu G, Cui Y. Toluene catalytic oxidation over gold catalysts supported on cerium-based high-entropy oxides. ENVIRONMENTAL TECHNOLOGY 2024; 45:3016-3028. [PMID: 37043616 DOI: 10.1080/09593330.2023.2202828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
A series of cerium-based high-entropy oxide catalysts (the ratio of CeO2 and HEO is 1:1) was prepared by a solid-state reaction method, which exploit their unique structural and performance advantages. The Ce-HEO-T samples can achieve 100% toluene conversion rate above 328°C when they were used as catalysts directly. Subsequently, the Ce-HEO-500 exhibited the lowest temperature for toluene oxidation was used as a support to deposit different amounts of Au for a further performance improvement. Among all of prepared samples, Au/Ce-HEO-500 with a moderate content of Au (0.5 wt%) exhibited the lowest temperature for complete combustion of toluene (260°C), which decreased nearly 70°C compared with Ce-HEO-500 support. Moreover, it also showed excellent stability for 60 h with 98% toluene conversion rate. Most importantly, under the condition of 5 vol.% H2O vapour, the toluene conversion rate remained unchanged and even increased slightly compared with that in dry air, exhibiting excellent water resistance. Combined with the characterizations of XRD, SEM, TEM, BET, Raman, H2-TPR and XPS, it was found that the high dispersion of active Au NPs, the special high-entropy structure and the synergistic effect between Au and Ce, Co, Cu are the key factors when improving the catalytic performance in the Au/Ce-HEO-500 catalyst.
Collapse
Affiliation(s)
- Jing Zhou
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, People's Republic of China
| | - Yuhua Zheng
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangyi Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Xi Zeng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Guangwen Xu
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, People's Republic of China
| | - Yanbin Cui
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Zhang B, Liang P, Zhang X, Wang J, Zhang C, Xiong M, He X. Lattice oxygen activation of MnO 2 by CeO 2 for the improved degradation of bisphenol A in the peroxymonosulfate-based oxidation. J Colloid Interface Sci 2024; 660:703-715. [PMID: 38271806 DOI: 10.1016/j.jcis.2024.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The structure of MnO2 was modified by constructing the composites CeO2/ MnO2 via a facile hydrothermal method. The catalytic performance of optimal composite (Mn-Ce10) in peroxymonosulfate (PMS) activation for the degradation of bisphenol A (BPA) is approximately three times higher than that of MnO2 alone. The average valence of manganese in CeO2/MnO2 is lowered compared to MnO2, which induces the generation of more free radicals, such as OH and SO4•-. In addition, the composite exhibits a higher concentration of oxygen vacancies than MnO2, facilitating bondingwith PMS to produce more singlet oxygen (1O2). Moreover, the incorporation of CeO2 activates the lattice oxygen of MnO2, improving its oxidative ability. Consequently, approximately 48% of BPA decomposition in 10min is attributed to direct oxidation in the Mn-Ce10/PMS system, whereas only 36% occurs in 30min for the MnO2/PMS system. Simulation results confirm weakened Mn-O covalency and elongated Mn-O bonds due to the activation of lattice oxygen in CeO2/MnO2, demonstrating that PMS tends to be adsorbed on the composite rather than on MnO2. This work establishes a relationship between lattice oxygen and the degradation pathway, offering a novel approach for the targeted regulation of catalytic oxidation.
Collapse
Affiliation(s)
- Bolun Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Ping Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China.
| | - Xinxin Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Jie Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China.
| |
Collapse
|
4
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
5
|
Zhao H, Meng P, Gao S, Wang Y, Sun P, Wu Z. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167553. [PMID: 37802335 DOI: 10.1016/j.scitotenv.2023.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
NOx and volatile organic compounds (VOCs) are two major pollutants commonly found in industrial flue gas emissions. They play a significant role as precursors in the formation of ozone and fine particulate matter (PM2.5). The simultaneous removal of NOx and VOCs is crucial in addressing ozone and PM2.5 pollution. In terms of investment costs and space requirements, the development of bifunctional catalysts for the simultaneous selective catalytic reduction (SCR) of NOx and catalytic oxidation of VOCs emerges as a viable technology that has garnered considerable attention. This review provides a summary of recent advances in catalysts for the simultaneous removal of NOx and VOCs. It discusses the reaction mechanisms and interactions involved in NH3-SCR and VOCs catalytic oxidation, the effects of catalyst acidity and redox properties. The insufficiency of bifunctional catalysts was pointed out, including issues related to catalytic activity, product selectivity, catalyst deactivation, and environmental concerns. Subsequently, potential solutions are presented to enhance catalyst performance, such as optimizing the redox properties and acidity, enhancing resistance to poisoning, substituting environment friendly metals and introducing hydrocarbon selective catalytic reduction (HC-SCR) reaction. Finally, some suggestions are given for future research directions in catalyst development are prospected.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pu Meng
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shan Gao
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yuejun Wang
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
6
|
Sodpiban O, Kessaratikoon T, Smith J, Ren G, Del Gobbo S, Das S, Chi M, D'Elia V, Gates BC. Catalysts Prepared from Atomically Dispersed Ce(III) on MgO Rival Bulk Ceria for CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55885-55894. [PMID: 37991323 DOI: 10.1021/acsami.3c13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation in a once-through flow reactor and characterized by atomic-resolution scanning transmission electron microscopy, X-ray absorption near-edge structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, before and after catalysis. The most active catalysts, formed from the precursor incorporating Ce(III), displayed performance similar to that reported for bulk ceria under comparable conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on-stream, 2 days, increasing slightly in activity as the atomically dispersed cerium ions were transformed into ceria nanodomains represented as CeOx and having increased reducibility on the MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium loadings can be prepared and may pave the way for improved efficiencies of cerium utilization in oxidation catalysis.
Collapse
Affiliation(s)
- Ounjit Sodpiban
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Tanika Kessaratikoon
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Jacob Smith
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guodong Ren
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Silvano Del Gobbo
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Sonali Das
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai 400076, India
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valerio D'Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
7
|
Sun X, Yang S, Liu X, Qiao Y, Liu Z, Li X, Pan J, Liu H, Wang L. The enhancement of benzene total oxidation over Ru xCeO 2 catalysts at low temperature: The significance of Ru incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165574. [PMID: 37474046 DOI: 10.1016/j.scitotenv.2023.165574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Catalytic oxidation is considered to be the most efficient technology for eliminating benzene from waste gas. The challenge is the reduction of the catalytic reaction temperature for the deep oxidation of benzene. Here, highly efficient RuxCeO2 catalysts were utilized to turn the number of surface oxygen vacancies and Ce-O-Ru bonds via a one-step hydrothermal method, resulting in a preferable low-temperature reducibility for the total oxidation of benzene. The T50 of the Ru0.2CeO2 catalyst for benzene oxidation was 135 °C, which was better than that of pristine CeO2 (239 °C) and 0.2Ru/CeO2 (190 °C). The superior performance of Ru0.2CeO2 was attributed to its large surface area (approximately 114.23 m2·g-1), abundant surface oxygen vacancies, and Ce-O-Ru bonds. The incorporation of Ru into the CeO2 lattice could effectively facilitate the destruction of the CeO bond and the facile release of lattice oxygen, inducing the generation of surface oxygen vacancies. Meanwhile, the bridging action of Ce-O-Ru bonds accelerated electron transfer and lattice oxygen transportation, which had a synergistic effect with surface oxygen vacancies to reduce the reaction temperature. The Ru0.2CeO2 catalyst also exhibited high catalytic stability, water tolerance, and impact resistance in terms of benzene abatement. Using in situ infrared spectroscopy, it was demonstrated that the Ru0.2CeO2 catalyst can effectively enhance the accumulation of maleate species, which are key intermediates for benzene ring opening, thereby enhancing the deep oxidation of benzene.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shu Yang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yarui Qiao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhilou Liu
- School of Metallurgical Engineering, JiangXi University of Science and Technology, Ganzhou 341000, PR China
| | - Xinxin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingwen Pan
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
8
|
Liu Y, Peyravi A, Dong X, Hashisho Z, Zheng S, Chen X, Gao D, Hao Y, Tong Y, Wang J. Effect of microstructure in mesoporous adsorbents on the adsorption of low concentrations of VOCs: An experimental and simulation study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131934. [PMID: 37390690 DOI: 10.1016/j.jhazmat.2023.131934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
This study evaluated the adsorption of five volatile organic compounds (VOCs) on Opoka, precipitated silica, and palygorskite, to elucidate the effect of their pore size on VOCs adsorption. The adsorption capacity of these adsorbents is not only highly correlated with their surface area and pore volume, but also notably improved by the presence of micropores. The variation in adsorption capacity for different VOCs was primarily influenced by their boiling point and polarity. Palygorskite, which had the smallest total pore volume (0.357 cm3/g) but the largest micropore volume (0.043 cm3/g) among the three adsorbents, exhibited the highest adsorption capacity for all tested VOCs. Additionally, the study constructed slit pore models of palygorskite with micropores (0.5 and 1.5 nm) and mesopores (3.0 and 6.0 nm), calculated and discussed the heat of adsorption, concentration distribution, and interaction energy of VOCs adsorbed on different pore models. The results revealed that the adsorption heat, concentration distribution, total interaction energy, and van der Waals energy decrease with increasing pore size. The concentration of VOCs in 0.5 nm pore was nearly three times that in 6.0 nm pore. This work can also provide guidance for further research on using adsorbents with mixed microporous and mesoporous structures to control VOCs.
Collapse
Affiliation(s)
- Yangyu Liu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China; School of Chemical and Environment Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 2W2, Canada
| | - Arman Peyravi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 2W2, Canada
| | - Xiongbo Dong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Zaher Hashisho
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 2W2, Canada.
| | - Shuilin Zheng
- School of Chemical and Environment Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Xiao Chen
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| | - Du Gao
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| | - Yongxing Hao
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China.
| | - Jiuyue Wang
- School of Art, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| |
Collapse
|
9
|
Zhang Y, Wang Y, Liu Y, Zhou L, Xu H, Wu Z. Simultaneous Generation of Ammonia during Nitrile Waste Gas Purification over a Silver Single-Atom-Doped Ceria Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12513-12522. [PMID: 37542459 DOI: 10.1021/acs.est.3c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Catalytic elimination of toxic nitrile waste gas is of great significance for preserving the atmospheric environment, but achieving resource utilization during its destruction has been less explored. Herein, this study proposed a universal strategy for nitrile waste gas purification and NH3 generation simultaneously. The developed silver single-atom-doped ceria nanorod (Ag1/R-CeO2) was endowed with near complete mineralization and around 90% NH3 yield at 300-350 °C for the catalytic oxidation of both acetonitrile and acrylonitrile. The introduction of the Ag single atom created more surface oxygen vacancies, thereby promoting water activation to form abundant surface hydroxyl groups. As a benefit from this, the hydrolysis reaction of nitrile to generate NH3 was accelerated. Meanwhile, the electron transfer effect from the Ag atom to Ce and hydroxyl species facilitated NH3 desorption, which inhibited the oxidation of NH3. Moreover, the increased surface oxygen vacancies also promoted the mineralization of hydrolysis carbonaceous intermediates to CO2. In contrast, the Ag nanoparticle-modified sample possessed stronger reducibility and NH3 adsorption, leading to the excessive oxidation of NH3 to N2 and NOx. This work provided a useful guidance for resourceful purification of nitrile waste gas.
Collapse
Affiliation(s)
- Yaoyu Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuxiong Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
10
|
Wang Z, Xiao W, Zhang F, Zhang S, Jin W. Experimental study and kinetic model analysis on photothermal catalysis of formaldehyde by manganese and cerium based catalytic materials. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:345-361. [PMID: 36794340 DOI: 10.1080/10962247.2023.2179685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Modern people spend more and more time in cars in their daily lives, and the pollution of formaldehyde in the car may directly affect people's health. Thermal catalytic oxidation technology by solar light is a potential way to purify formaldehyde in cars. MnOx-CeO2 was prepared by the modified co-precipitation method as the main catalyst, and the basic characteristic (SEM, N2 adsorption, H2-TPR, UV-visible absorbance) were also analyzed in detail. The experimental study was set up to simulate the solar photothermal catalysis of formaldehyde in-car environment. The results showed that the higher the temperature in the experimental box (56.7 ± 0.2°C, 62.6 ± 0.2°C, 68.2 ± 0.2°C), the better the formaldehyde degradation by catalytic effect (formaldehyde degradation percentage: 76.2%, 78.3%, 82.1%). With increase of the initial formaldehyde concentration (200 ppb, 500 ppb, 1000 ppb), the catalytic effect first increased and then decreased (formaldehyde degradation percentage: 63%, 78.3%, 70.6%). The catalytic effect risen gradually with the increase of load ratio (10g/m2, 20g/m2, and 40g/m2), and the formaldehyde degradation percentages were 62.8%, 78.3%, and 81.1%, respectively. According to the expressions of the Eley-Rideal (ER) model, the Langmuir-Hinshelwood (LH) model, and the Mars-Van Krevelen (MVK) model, the experimental results were fitted and verified, and it was found that the ER model had a high degree of fit. It is more suitable to explain the catalytic mechanism of formaldehyde by MnOx-CeO2 catalyst in the experimental cabin, where formaldehyde is in the adsorption state and oxygen is in the gas phase.Implications: Judging from the current research status, vehicles have become an indispensable mode of travel for people, and the air quality in the vehicle is not optimistic. Most vehicles generally have the phenomenon of excessive formaldehyde. The characteristic of formaldehyde in the car is the continuous release, especially in the hot summer, the temperature inside the car rises sharply under the sun radiation. At this time, the formaldehyde concentration exceeds the standard by 4 to 5 times, which can cause great damage to the health of the passengers. In order to improve the air quality in the car, it is necessary to adopt the correct purification technology to degrade formaldehyde. The problem brought by this situation is how to effectively use solar radiation and high temperature in the car to degrade formaldehyde in the car. Therefore, this study uses the thermal catalytic oxidation technology to catalyze the degradation of formaldehyde in the high temperature environment of the car in summer. The selected catalyst is MnOx-CeO2, mainly because manganese oxide (MnOx) itself is the most effective catalyst for volatile organic compounds (TCO) among transition metal oxides, and CeO2 has excellent oxygen storage and release capacity and Oxidation activity, which helps to improve the activity of MnOx. Finally, the effects of temperature, initial concentration of formaldehyde and catalyst loading on the experiment were explored, and the kinetic model of thermal catalytic oxidation of formaldehyde with MnOx-CeO2 catalyst was analyzed to provide technical support for the future application of this research in practice.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Wei Xiao
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Fangzhu Zhang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Shimin Zhang
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| | - Wufeng Jin
- Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
11
|
He D, Ma Y, Yang X, Li H, Wang X. Photo-Activated Direct Catalytic Oxidation of Gaseous Benzene with a Cu-Connected Serial Heterojunction Array of Co 3 O 4 /Cu x O/Foam Cu Assembled via Layer upon Layer Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207114. [PMID: 37026427 DOI: 10.1002/smll.202207114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The foam copper (FCu) has been first used as a promising supporting material to prepare a photo-activated catalyst of Co3 O4 /Cux O/FCu, in which the fine Co3 O4 particles are inlayed on the Cux O nanowires to form a Z-type heterojunction array connected by substrate Cu. The prepared samples have been used as a photo-activated catalyst to directly decompose gaseous benzene and the optimized Co3 O4 /Cux O/FCu demonstrates a 99.5% removal efficiency and 100% mineralizing rate within 15 min in benzene concentration range from 350 to 4000 ppm under simulate solar light irradiation. To track the reactive mechanism, a series of MOx /Cux O/FCu (M = Mn, Fe, Co, Ni, Cu, Zn) is prepared and a novel photo-activated direct catalytic oxidation route is proposed based on the comparative investigation of material properties. Moreover, the approach grew in situ via layer upon layer oxidation on FCu dedicates to the extra lasting reusability and the easy accessibility in the diverse situations. This work provides a novel strategy for the preparation of Cu connected series multidimensional heterojunction array and a promising application for the quick abatement of the high-leveled concentration gaseous benzene and its derivatives from the industrial discharged flow or the accident scene's leakage.
Collapse
Affiliation(s)
- Dan He
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Yuxuan Ma
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Xiaoxue Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Huiqin Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| |
Collapse
|
12
|
Shen Z, Gao E, Meng X, Xu J, Sun Y, Zhu J, Li J, Wu Z, Wang W, Yao S, Dai Q. Mechanistic Insight into Catalytic Combustion of Ethyl Acetate on Modified CeO 2 Nanobelts: Hydrolysis-Oxidation Process and Shielding Effect of Acetates/Alcoholates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3864-3874. [PMID: 36812295 DOI: 10.1021/acs.est.2c07991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, based on the comparison of two counterparts [Mn- and Cr-modified CeO2 nanobelts (NBs)] with the opposite effects, some novel mechanistic insights into the ethyl acetate (EA) catalytic combustion over CeO2-based catalysts were proposed. The results demonstrated that EA catalytic combustion consisted of three primary processes: EA hydrolysis (C-O bond breakage), the oxidation of intermediate products, and the removal of surface acetates/alcoholates. Rapid EA hydrolysis typically occurs on surface acid/base sites or hydroxyl groups, and the removal of surface acetates/alcoholates resulting from EA hydrolysis is considered the rate-determining step. The deposited acetates/alcoholates like a shield covered the active sites (such as surface oxygen vacancies), and the enhanced mobility of the surface lattice oxygen as an oxidizing agent played a vital role in breaking through the shield and promoting the further hydrolysis-oxidation process. The Cr modification impeded the release of surface-activated lattice oxygen from the CeO2 NBs and induced the accumulation of acetates/alcoholates at a higher temperature due to the increased surface acidity/basicity. Conversely, the Mn-substituted CeO2 NBs with the higher lattice oxygen mobility effectively accelerated the in situ decomposition of acetates/alcoholates and facilitated the re-exposure of surface active sites. This study may contribute to a further mechanistic understanding into the catalytic oxidation of esters or other oxygenated volatile organic compounds over CeO2-based catalysts.
Collapse
Affiliation(s)
- Zude Shen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xinyu Meng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
13
|
Investigation of Cu-doped ceria through a combined spectroscopic approach: involvement of different catalytic sites in CO oxidation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Zeng Z, Guan MJ, Chen H, Xu X, Zou MJ, Zhang MC, Du Y, Li L. Capture-bonding Super Assembly of Nanoscale Dispersed Bimetal on Uniform CeO 2 Nanorod for the Toluene Oxidation. Chem Asian J 2023; 18:e202200947. [PMID: 36377353 DOI: 10.1002/asia.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Elimination of VOCs by catalytic oxidation is an important technology. Here, a general synergistic capture-bonding superassembly strategy was proposed to obtain the nanoscale dispersed 5.8% PtFe3 -CeO2 catalyst, which showed a high toluene oxidation activity (T100 =226 °C), excellent catalytic stability (125 h, >99.5%) and a good water resistance ability (70 h, >99.5%). Through the detailed XPS analysis, oxygen cycle experiment, hydrogen reduction experiment, and in-situ DRIFT experiment, we could deduce that PtFe3 -CeO2 had two reaction pathways. The surface adsorbed oxygen resulting from PtFe3 nanoparticles played a dominant role, due to the fast cycling between the surface adsorbed oxygen and oxygen vacancy. In contrast, the lattice oxygen resulting from CeO2 nanorods played an important role due to the relationship between the toluene oxidation activity and the metal-oxygen bonding energy. Furthermore, DFT simulation verified Pt sites were the dominant reaction active sites during this reaction.
Collapse
Affiliation(s)
- Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Juan Guan
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Hongyu Chen
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiang Xu
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Jianwu Zou
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Chongjie Zhang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yankun Du
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
15
|
Duan X, Qian Y, Wu J, Ma L, Zhao Z, Wang L, Xiao L, Zhang S. Photocatalytic Degradation of VOC Waste Gas in Petrochemical Sewage Fields. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoxu Duan
- College of Architecture & Environment, Sichuan University, Chengdu, Sichuan610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan610065, China
| | - Yuming Qian
- Shanghai Electro-Mechanical Engineering Institute, Shanghai200000, China
| | - Jiwei Wu
- College of Architecture & Environment, Sichuan University, Chengdu, Sichuan610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan610065, China
| | - Liang Ma
- College of Architecture & Environment, Sichuan University, Chengdu, Sichuan610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan610065, China
| | - Zhihuang Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| | - Liwang Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| | - Lingyu Xiao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| | - Shifan Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei434023, China
| |
Collapse
|
16
|
Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxidation Process of VOCs. Catalysts 2022. [DOI: 10.3390/catal12101134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Volatile organic compound (VOC) abatement has become imperative nowadays due to their harmful effect on human health and on the environment. Catalytic oxidation has appeared as an innovative and promising approach, as the pollutants can be totally oxidized at moderate operating temperatures under 500 °C. The most active single oxides in the total oxidation of hydrocarbons have been shown to be manganese and cobalt oxides. The main factors affecting the catalytic performances of several metal-oxide catalysts, including CoOx and MnOx, in relation to the total oxidation of hydrocarbons have been reviewed. The influence of these factors is directly related to the Mars–van Krevelen mechanism, which is known to be applied in the case of the oxidation of VOCs in general and hydrocarbons in particular, using transitional metal oxides as catalysts. The catalytic behaviors of the studied oxides could be closely related to their redox properties, their nonstoichiometric, defective structure, and their lattice oxygen mobility. The control of the structural and textural properties of the studied metal oxides, such as specific surface area and specific morphology, plays an important role in catalytic applications. A fundamental challenge in the development of efficient and low-cost catalysts is to choose the criteria for selecting them. Therefore, this research could be useful for tailoring advanced and high-performance catalysts for the total oxidation of VOCs.
Collapse
|
17
|
Cao Y, Zhang C, Xu D, Ouyang X, Wang Y, Lv L, Zhang T, Tang S, Tang W. Low-Temperature Oxidation of Toluene over MnO x–CeO 2 Nanorod Composites with High Sinter Resistance: Dual Effect of Synergistic Interaction on Hydrocarbon Adsorption and Oxygen Activation. Inorg Chem 2022; 61:15273-15286. [DOI: 10.1021/acs.inorgchem.2c02738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yijia Cao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dehua Xu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xian Ouyang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Li Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tao Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
18
|
Zheng Y, Zhou J, Zeng X, Hu D, Wang F, Cui Y. Template and interfacial reaction engaged synthesis of CeMnO x hollow nanospheres and their performance for toluene oxidation. RSC Adv 2022; 12:25898-25905. [PMID: 36199615 PMCID: PMC9468800 DOI: 10.1039/d2ra04678d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
A series of well-dispersed CeMnO x hollow nanospheres with uniform diameter and thickness were synthesized by a novel approach combining the template method and interfacial reaction. A SiO2 template was used as a hard template for preparation of SiO2@CeO2 nanospheres by solvothermal reaction. SiO2@CeMnO x could be formed after KMnO4 was reacted with SiO2@CeO2 by interfacial reaction between MnO4 - and Ce3+. Among all the prepared catalysts, CeMnO x -3 with a moderate content of Mn (15 wt%) exhibited the lowest temperature for complete combustion of toluene (280 °C). Moreover, it showed high stability for 36 h with toluene conversion above 97.7% and good water tolerance with 5 vol% H2O. With characterization, we found that the reaction between Ce and Mn in the Ce-Mn binary oxides gave rise to increased Ce3+ and oxygen vacancies, which led to the formation of enhanced reducibility and more surface-absorbed oxygens (O2 2-, O2- and O-), and improved the catalytic performance further.
Collapse
Affiliation(s)
- Yuhua Zheng
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Jing Zhou
- School of Chemical Engineering, Shenyang University of Chemical Technology Shenyang 110142 Liaoning China
| | - Xi Zeng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University Beijing 100048 China
| | - Dandan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Fang Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University Beijing 100048 China
| | - Yanbin Cui
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
19
|
Controlled synthesis of niobium and rare earth mixed oxides for catalytic combustion of chlorinated VOCs in the synthesis process of polyether polyol and polyurethane. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Peng S, Yang G, Zhang J. ZSM-5 nanocrystal promoted low-temperature activity of supported manganese oxides for catalytic oxidation of toluene. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
The Emergence of the Ubiquity of Cerium in Heterogeneous Oxidation Catalysis Science and Technology. Catalysts 2022. [DOI: 10.3390/catal12090959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Research into the incorporation of cerium into a diverse range of catalyst systems for a wide spectrum of process chemistries has expanded rapidly. This has been evidenced since about 1980 in the increasing number of both scientific research journals and patent publications that address the application of cerium as a component of a multi-metal oxide system and as a support material for metal catalysts. This review chronicles both the applied and fundamental research into cerium-containing oxide catalysts where cerium’s redox activity confers enhanced and new catalytic functionality. Application areas of cerium-containing catalysts include selective oxidation, combustion, NOx remediation, and the production of sustainable chemicals and materials via bio-based feedstocks, among others. The newfound interest in cerium-containing catalysts stems from the benefits achieved by cerium’s inclusion, which include selectivity, activity, and stability. These benefits arise because of cerium’s unique combination of chemical and thermal stability, its redox active properties, its ability to stabilize defect structures in multicomponent oxides, and its propensity to stabilize catalytically optimal oxidation states of other multivalent elements. This review surveys the origins and some of the current directions in the research and application of cerium oxide-based catalysts.
Collapse
|
22
|
L-asparagine Assisted Synthesis of Pt/CeO2 Nanospheres for Toluene Combustion. Catalysts 2022. [DOI: 10.3390/catal12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pt1/CeO2 nanospheres (Pt/CeO2-NS) were synthesized by the bath oiling method with L-asparagine as a necessary additive. Owing to the morphology control effect and coordination interaction of L-asparagine, CeO2 nanospheres can retain their nanosphere structure and show stronger electronic metal-support interaction with highly dispersed Pt. Moreover, the toluene catalytic combustion performance of Pt/CeO2-NS was investigated. The structure-performance relationship is analyzed according to the coordination state of Pt. The Pt/CeO2-NS catalyst exhibited superior catalytic activity than the commercial CeO2-supported Pt catalyst, which is attributed to its higher oxygen vacancy and Pt4+.
Collapse
|
23
|
Manganese doped Ceria (Ce1−xMnxO2−δ (x = 0–0.3)) catalysts synthesized by EDTA–Citrate method for soot oxidation activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Total oxidation of benzene over cerium oxide-impregnated two-dimensional MWW zeolites obtained by environmental synthesis using Brazilian rice husk silica agro-industrial waste. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, Veerapandian SKP, De Geyter N, Wang C, Chen Q, Morent R. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154290. [PMID: 35248631 DOI: 10.1016/j.scitotenv.2022.154290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.
Collapse
Affiliation(s)
- Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China; State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaqi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zuotong Zhao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Huang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Savita K P Veerapandian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium.
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Rino Morent
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 - B4, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Toluene Adsorption on CeO2 (111) Studied by FTIR and DFT. Top Catal 2022. [DOI: 10.1007/s11244-022-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zhou B, Ke Q, Wen M, Ying T, Cui G, Zhou Y, Gu Z, Lu H. Catalytic combustion of toluene on Pt/Al2O3 and Pd/Al2O3 catalysts with CeO2, CeO2-Y2O3, La2O3 as coating. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wu C, Fan Z, Lu D, Wu X, Du Y, Guo X. Insight into the contribution of cerium oxide to MnOx/CeO2 in methanol oxidation reaction: Perspective from the crystal facet of CeO2. ChemCatChem 2022. [DOI: 10.1002/cctc.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaohui Wu
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Zhaoyang Fan
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Dong Lu
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Xu Wu
- Taiyuan University of Technology College of Chemistry and Chemical Engineering 79 Yingze West Street 030024 Taiyuan CHINA
| | - Yali Du
- Jinzhong University Department of Chemistry and Chemical Engineering CHINA
| | - Xingmei Guo
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
31
|
Zhang L, Xue L, Lin B, Zhao Q, Wan S, Wang Y, Jia H, Xiong H. Noble Metal Single-Atom Catalysts for the Catalytic Oxidation of Volatile Organic Compounds. CHEMSUSCHEM 2022; 15:e202102494. [PMID: 35049142 DOI: 10.1002/cssc.202102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Volatile organic compounds (VOCs) are detrimental to the environment and human health and must be eliminated before discharging. Oxidation by heterogeneous catalysts is one of the most promising approaches for the VOCs abatement. Precious metal catalysts are highly active for the catalytic oxidation of VOCs, but they are rare and their high price limits large-scale application. Supported metal single-atom catalysts (SACs) have a high atom efficiency and provide the possibility to circumvent such limitations. This Review summarizes recent advances in the use of metal SACs for the complete oxidation of VOCs, such as benzene, toluene, formaldehyde, and methanol, as well as aliphatic and Cl- and S-containing hydrocarbons. The structures of the metal SACs used and the reaction mechanisms of the VOC oxidation are discussed. The most widely used SACs are noble metals supported on oxides, especially on reducible oxides, such as Mn2 O3 and TiO2 . The reactivity of most SACs is related to the activity of surface lattice oxygen of the oxides. Furthermore, several metal SACs show better reactivity and improved S and Cl resistance than the corresponding nanocatalysts, indicating that SACs have potential for application in the oxidation of VOCs. The deactivation and regeneration mechanisms of the metal SACs are also summarized. It is concluded that the application of metal SACs in catalytic oxidation of VOCs is still in its infancy. This Review aims to elucidate structure-performance relationships and to guide the design of highly efficient metal SACs for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Linli Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bingyong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
32
|
Cerium-Copper Oxides Synthesized in a Multi-Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a set of CuCeOx catalysts was prepared via the coprecipitation method using a Multi-Inlet Vortex Reactor: the Cu wt.% content is 5, 10, 20, 30 and 60. Moreover, pure CeO2 and CuO were synthesized for comparison purposes. The physico-chemical properties of this set of samples were investigated by complementary techniques, e.g., XRD, N2 physisorption at −196 °C, Scanning Electron Microscopy, XPS, FT-IR, Raman spectroscopy and H2-TPR. Then, the CuCeOx catalysts were tested for the CO and ethene oxidation reactions. As a whole, all the prepared samples presented good catalytic performances towards the CO oxidation reaction (1000 ppm CO, 10 vol.% O2/N2): the most promising catalyst was the 20%CuCeOx (complete CO conversion at 125 °C), which exhibited a long-term thermal stability. Similarly, the oxidative activity of the catalysts were evaluated using a gaseous mixture containing 500 ppm C2H4, 10 vol.% O2/N2. Accordingly, for the ethene oxidation reaction, the 20%CuCeOx catalyst evidenced the best catalytic properties. The elevated catalytic activity towards CO and ethene oxidation was mainly ascribed to synergistic interactions between CeO2 and CuO phases, as well as to the high amount of surface-chemisorbed oxygen species and structural defects.
Collapse
|
33
|
Benaissa S, Cherif-Aouali L, Hany S, Labaki M, Aouad S, Cousin R, Siffert S, Aboukaïs A. Influence of the preparation method and silver content on the nature of active sites in Ag/CeO2 catalysts used for propylene oxidation. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Ma S, Han W, Dong F, Tang Z. Construction of nanorod structure confined Pt@CeO2 catalyst by in-situ encapsulation strategy for low temperature catalytic oxidation of toluene. Chem Asian J 2022; 17:e202200074. [PMID: 35212194 DOI: 10.1002/asia.202200074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Indexed: 11/11/2022]
Abstract
In this work, the Pt@CeO2 catalyst with the nanorod structure (Pt@CeO2-R) and the bunch structure (Pt@CeO2-B) were synthesized through in situ encapsulation strategy of Pt species in Ce-MOFs, respectively. It is discovered that the Pt@CeO2-R catalyst owned the best catalytic performance for toluene catalytic combustion, and this situation was mainly caused by the confinement of Pt nanoparticles in Ce-MOFs, which was related to the chemical state of Pt species, redox ability, and the amount of active oxygen species. Among them, the Pt@CeO2-R catalyst owns more Ce3+ species, rich Pt4+ species, and abundant active oxygen species due to the existence of confined structure, which were conducive to promote catalytic oxidation of toluene. In addition, the Pt@CeO2-R catalyst also exhibited more redox ability, which may speed up the catalytic reaction rates. On the contrary, the Pt/CeO2-R catalyst was synthesized through a simple impregnation method, and exhibited the poor activity for toluene catalytic combustion due to poor Pt4+ species and active oxygen species. Therefore, this work provides a feasible experimental basis for the study of different morphologies and encapsulated metal particles.
Collapse
Affiliation(s)
- Siyi Ma
- Lanzhou Institute of Chemical Physics, ERC, CHINA
| | - Weiliang Han
- Lanzhou Institute of Chemical Physics, ERC, CHINA
| | - Fang Dong
- Lanzhou Institute of Chemical Physics, ERC, CHINA
| | - Zhicheng Tang
- Lanzhou Institute of Chemical Physics, National Engineering Research Center for Fine Petrochemical Intermediates, Tianshui road, No.18, Lanzhou, 730000, Lanzhou, CHINA
| |
Collapse
|
35
|
Zhang Y, Li X, Zhang Y, Jiao T, Zhang H, Zhang W, Liang P. Mn(CeZr)O x chelation-induced synthesis and its hydrothermal aging characteristics for catalytic abatement of toluene. CHEMOSPHERE 2022; 288:132662. [PMID: 34756948 DOI: 10.1016/j.chemosphere.2021.132662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
In this work, Mn(CeZr)Ox was synthesized by using chelation-induced synergistic self-assembly strategy for the combustion of toluene. The physicochemical properties of the synthesized catalysts were characterized by XRD, ICP-MS, SEM, TEM, XPS and N2 sorption. The Mn(CeZr)Ox catalyst with T90 = 225 °C exhibited improved catalytic performance than the original MnOx catalyst (T90 = 260 °C) and had significant low-temperature activity. The relationship between catalyst activity and structure was analyzed. By substituting Ce and Zr elements into the hollow microspheres of MnO2, oxygen vacancies were produced. The main factors affecting the catalytic activity of the catalyst and the reason why it remained high catalytic activity after a long period of hydrothermal treatment were discussed. After hydrothermal aging, the original pore structure of Mn(CeZr)Ox catalyst collapsed and the specific surface area decreased, but the overall crystallinity of the catalyst increased and the content of oxygen species in the lattice increased. The distribution of Mn and oxygen species on the catalyst surface changed significantly after hydrothermal treatment. The appropriate ratio of Mn4+ to Mn3+ and the ratio of lattice oxygen to adsorbed oxygen species are beneficial to the redox reaction cycle.
Collapse
Affiliation(s)
- Yanshi Zhang
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China
| | - Xiangping Li
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| | - Yaqing Zhang
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China
| | - Tiantian Jiao
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China
| | - Huawei Zhang
- School Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266033, PR China
| | - Wenrui Zhang
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China
| | - Peng Liang
- Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China.
| |
Collapse
|
36
|
Zhang T, Dong A, Wan X, Shi G, Peng J, Li W, Wang G, Chen D, Wang W. Promotion of Low‐Temperature Oxidation of Propane through Introduction of Ce into Mullite Oxide YMn2O5. Chempluschem 2022; 87:e202100455. [DOI: 10.1002/cplu.202100455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Zhang
- Shandong University of Science and Technology College of Electronic and Information Engineering Qingdao CHINA
| | - Anqi Dong
- Nankai University College of Electronic Information and Optical Engineering Tianjin CHINA
| | - Xiang Wan
- Nankai University College of Electronic Information and Optical Engineering Tianjin CHINA
| | - Guoliang Shi
- Nankai University College of Environmental Science and Engineering Tianjin CHINA
| | - Jianfei Peng
- Nankai University College of Environmental Science and Engineering Tianjin CHINA
| | - Weifang Li
- Tianjin Academy of Environmental Sciences state Environmental Protection Key Laboratory of Odor Pollution Control Tianjin CHINA
| | - Gen Wang
- Tianjin Academy of Environmental Sciences state Environmental Protection Key Laboratory of Odor Pollution Control Tianjin CHINA
| | - Da Chen
- Civil Aviation University of China Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response Tianjin CHINA
| | - Weichao Wang
- Nankai University College of Electronic Information and Optical Engineering 94 Weijin Rd, 370001 Tianjin CHINA
| |
Collapse
|
37
|
The lanthanide doping effect on toluene catalytic oxidation over Pt/CeO 2 catalyst. J Colloid Interface Sci 2022; 614:33-46. [PMID: 35085902 DOI: 10.1016/j.jcis.2022.01.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/19/2023]
Abstract
The present work was undertaken to know the lanthanide doping effect on the physicochemical properties of Pt/CeO2 catalysts and their catalytic activity for toluene oxidation. A series of lanthanide ions (La, Pr, Nd, Sm and Gd) were incorporated into ceria lattice by hydrothermal method, and the Pt nanoparticles with equal quality were successfully loaded on various ceria-based supports. Their catalytic performance toward toluene oxidation shows a remarkable lanthanide-doping effect, and the activity is much dependent on the ion radius and valence state of dopants. Owing to smaller ion radius and low valence state, the dopant of Gd would form more Gd-Ce complex and less GdO8-type complex, generating more oxygen vacancies and then promoting oxygen replenishment. Furthermore, the high concentration of oxygen vacancy would drive electrons to transfer from support to metal, and thus electron-rich and under-coordinated Pt particles that are favorable for toluene adsorption and dissociation are obtained. Attributing to above positive factors, the doping of Gd would effectively enhance the catalytic oxidation of toluene over Pt/CeO2 catalyst. In addition, the Pt/CeGdO2 sample exhibits an excellent reaction stability and resistance of concentration impact.
Collapse
|
38
|
Woźniak P, Małecka MA, Kraszkiewicz P, Miśta W, Bezkrovnyi O, Chinchilla L, Trasobares S. Confinement of nano-gold in 3D hierarchically structured gadolinium-doped ceria mesocrystal: synergistic effect of chemical composition and structural hierarchy in CO and propane oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01214f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gadolinium-doped ceria hierarchical gold catalyst shows four-fold TOF increase compared to undoped non-hierarchical system, proving the synergistic effect of doping and structural hierarchy in propane oxidation.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Włodzimierz Miśta
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Oleksii Bezkrovnyi
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
| | - Lidia Chinchilla
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| | - Susana Trasobares
- Departamento de Ciencia de los Materiales e Ing. Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
39
|
The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts 2021. [DOI: 10.3390/catal11121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CeO2 catalysts were prepared by a precipitation method using either (NH4)2Ce(NO3)6 or Ce(NO3)3, as CeIV or CeIII precursors respectively. The influence of the different precursors on catalytic activity was evaluated for the total oxidation of propane with water present in the feed. The catalyst prepared using the CeIV precursor was more active for propane total oxidation. The choice of precursor influenced catalyst properties such as surface area, reducibility, morphology, and active oxygen species. The predominant factor associated with the catalytic activity was related to the formation of either CeO2.nH2O or Ce2(OH)2(CO3)2.H2O precipitate species, formed prior to calcination. The formation of CeO2.nH2O resulted in enhanced surface area which was an important factor for controlling catalyst activity.
Collapse
|
40
|
Meng X, Meng L, Gong Y, Li Z, Mo G, Zhang J. Modifying Y zeolite with chloropropyl for improving Cu load on Y zeolite as a super Cu/Y catalyst for toluene oxidation. RSC Adv 2021; 11:37528-37539. [PMID: 35496414 PMCID: PMC9043743 DOI: 10.1039/d1ra06469j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
Developing an efficient catalyst is desirable when for example moving from a noble metal-based catalyst to a transition metal-based one for VOC removal. In this work, the chloropropyl-modified NaY zeolite (NaY-CPT) was first synthesized in an extremely dense system through introducing 3-chloropropyl-trimethoxysilane (CPT) in the aluminosilicate sol. Then the Cu/Y-CPT catalyst was fabricated by impregnating Cu species on the NaY-CPT zeolite and the highly effective Cu/Y based catalyst has been achieved for catalytic toluene oxidation. The structure evolution of CPT modified sol and its effect on texture properties of NaY-CPT and thereby reduction ability of Cu/Y catalyst were systematically investigated by synchrotron radiation small angle X-ray scattering (SR-SAXS), EXAFS and other characterization. The CPT modified sol can promote the formation of more active aluminosilicate species, greatly accelerating crystal growth and improving framework Si/Al ratio of NaY zeolite. Due to the presence of the CPT group, the Cu/Y-CPT catalyst enhanced the interaction between Cu species and the zeolite matrix, resulting in small sized CuO nanoparticles (2.0-4.0 nm) anchoring to NaY-CPT. The Cu/Y-CPT catalyst renders more isolated Cu2+ species and adsorbed oxygen species, which are reactive in the oxidation reaction due to their high reducibility and mobility. Finally, the Cu/Y-CPT catalyst exhibits 90% toluene conversion at 296 °C (T 90), lower than the value of 375 °C on the conventional Cu/Y-con catalyst. Meanwhile, the optimal Cu/Y-CPT catalyst also gives higher toluene conversion and stability in moisture conditions.
Collapse
Affiliation(s)
- Xiaoling Meng
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum Beijing 102249 China
| | - Lingke Meng
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum Beijing 102249 China
| | - Yanjun Gong
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum Beijing 102249 China
| | - Zhihong Li
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences Beijing China
| | - Guang Mo
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences Beijing China
| | - Jing Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences Beijing China
| |
Collapse
|
41
|
Park YK, Shim WG, Jung SC, Jung HY, Kim SC. Catalytic removal of volatile organic compounds using black mass from spent batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Li X, Niu Y, Zhang C, Su H, Qi Y. Catalytic Combustion of Toluene Over Broccoli‐Shaped Ce
1
Mn
3
Ox Solid Solution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xuelian Li
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongfang Niu
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chuanwei Zhang
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Huaigang Su
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanxing Qi
- National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
43
|
|
44
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
45
|
Abstract
Red mud waste from the aluminium industry was modified by leaching using hydrochloric acid or oxalic acid with additives, followed by precipitation or evaporation. The prepared catalysts were characterized in detail and tested for toluene total oxidation. The samples prepared by precipitation of the leachate by adding a base gave a much better performance in catalytic oxidation than the ones prepared by just evaporating the leachate. These improved performances can be correlated to the enhanced textural and redox properties of the catalysts due to the better dispersion and higher enrichment of Fe oxides at their surface. The best performing catalyst had a light-off temperature of around 310 °C and complete oxidation took place at around 380 °C.
Collapse
|
46
|
Ziemba M, Schilling C, Ganduglia-Pirovano MV, Hess C. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand. Acc Chem Res 2021; 54:2884-2893. [PMID: 34137246 PMCID: PMC8264949 DOI: 10.1021/acs.accounts.1c00226] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusBecause ceria (CeO2) is a key ingredient in the formulation of many catalysts, its catalytic roles have received a great amount of attention from experiment and theory. Its primary function is to enhance the oxidation activity of catalysts, which is largely governed by the low activation barrier for creating lattice O vacancies. Such an important characteristic of ceria has been exploited in CO oxidation, methane partial oxidation, volatile organic compound oxidation, and the water-gas shift (WGS) reaction and in the context of automotive applications. A great challenge of such heterogeneously catalyzed processes remains the unambiguous identification of active sites.In oxidation reactions, closing the catalytic cycle requires ceria reoxidation by gas-phase oxygen, which includes oxygen adsorption and activation. While the general mechanistic framework of such processes is accepted, only very recently has an atomic-level understanding of oxygen activation on ceria powders been achieved by combined experimental and theoretical studies using in situ multiwavelength Raman spectroscopy and DFT.Recent studies have revealed that the adsorption and activation of gas-phase oxygen on ceria is strongly facet-dependent and involves different superoxide/peroxide species, which can now be unambiguously assigned to ceria surface sites using the combined Raman and DFT approach. Our results demonstrate that, as a result of oxygen dissociation, vacant ceria lattice sites are healed, highlighting the close relationship of surface processes with lattice oxygen dynamics, which is also of technical relevance in the context of oxygen storage-release applications.A recent DFT interpretation of Raman spectra of polycrystalline ceria enables us to take account of all (sub)surface and bulk vibrational features observed in the experimental spectra and has revealed new findings of great relevance for a mechanistic understanding of ceria-based catalysts. These include the identification of surface oxygen (Ce-O) modes and the quantification of subsurface oxygen defects. Combining these theoretical insights with operando Raman experiments now allows the (sub)surface oxygen dynamics of ceria and noble metal/ceria catalysts to be monitored under the reaction conditions.Applying these findings to Au/ceria catalysts provides univocal evidence for ceria support participation in heterogeneous catalysis. For room-temperature CO oxidation, operando Raman monitoring the (sub)surface defect dynamics clearly demonstrates the dependence of catalytic activity on the ceria reduction state. Extending the combined experimental/DFT approach to operando IR spectroscopy allows the elucidation of the nature of the active gold as (pseudo)single Au+ sites and enables us to develop a detailed mechanistic picture of the catalytic cycle. Temperature-dependent studies highlight the importance of facet-dependent defect formation energies and adsorbate stabilities (e.g., carbonates). While the latter aspects are also evidenced to play a role in the WGS reaction, the facet-dependent catalytic performance shows a correlation with the extent of gold agglomeration. Our findings are fully consistent with a redox mechanism, thus adding a new perspective to the ongoing discussion of the WGS reaction.As outlined above for ceria-based catalysts, closely combining state-of-the-art in situ/operando spectroscopy and theory constitutes a powerful approach to rational catalyst design by providing essential mechanistic information based on an atomic-level understanding of reactions.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Christian Schilling
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - M. Verónica Ganduglia-Pirovano
- Instituto de Catálisis y Petroleoquímica - Consejo Superior de Investigaciones Científicas, Marie Curie 2, 28049 Madrid, Spain
| | - Christian Hess
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
47
|
Abstract
We review the solution-based synthesis routes to cerium oxide materials where one or more elements are included in place of a proportion of the cerium, i.e., substitution of cerium is performed. The focus is on the solvothermal method, where reagents are heated above the boiling point of the solvent to induce crystallisation directly from the solution. This yields unusual compositions with crystal morphology often on the nanoscale. Chemical elements from all parts of the periodic table are considered, from transition metals to main group elements and the rare earths, including isovalent and aliovalent cations, and surveyed using the literature published in the past ten years. We illustrate the versatility of this synthesis method to allow the formation of functional materials with applications in contemporary applications such as heterogeneous catalysis, electrodes for solid oxide fuel cells, photocatalysis, luminescence and biomedicine. We pick out emerging trends towards control of crystal habit by use of non-aqueous solvents and solution additives and identify challenges still remaining, including in detailed structural characterisation, the understanding of crystallisation mechanisms and the scale-up of synthesis.
Collapse
|
48
|
Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Lim AMH, Zeng HC. Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20501-20510. [PMID: 33891399 DOI: 10.1021/acsami.1c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerium(IV) oxide (CeO2), or ceria, is one of the most abundant rare-earth materials that has been extensively investigated for its catalytic properties over the past two decades. However, due to the global scarcity and increasing cost of rare-earth materials, efficient utilization of this class of materials poses a challenging issue for the materials research community. Thus, this work is directed toward an exploration of making ultrathin hollow ceria or other rare-earth metal oxides and mixed rare-earth oxides in general. Such a hollow morphology appears to be attractive, especially when the thickness is trimmed to its limit, so that it can be viewed as a two-dimensional sheet of organized nanoscale crystallites, while remaining three-dimensional spatially. This ensures that both inner and outer shell surfaces can be better utilized in catalytic reactions if the polycrystalline sphere is further endowed with mesoporosity. Herein, we have devised our novel synthetic protocol for making ultrathin mesoporous hollow spheres of ceria or other desired rare-earth oxides with a tunable shell thickness in the region of 10 to 40 nm. Our ceria ultrathin hollow spheres are catalytically active and outperform other reported similar nanostructured ceria for the oxidation reaction of carbon monoxide in terms of fuller utilization of cerium. The versatility of this approach has also been extended to fabricating singular or multicomponent rare-earth metal oxides with the same ultrathin hollow morphology and structural uniformity. Therefore, this approach holds good promise for better utilization of rare-earth metal elements across their various technological applications, not ignoring nano-safety considerations.
Collapse
Affiliation(s)
- Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
50
|
Chung CH, Tu FY, Chiu TA, Wu TT, Yu WY. Critical Roles of Surface Oxygen Vacancy in Heterogeneous Catalysis over Ceria-based Materials: A Selected Review. CHEM LETT 2021. [DOI: 10.1246/cl.200845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ching-Hsiu Chung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Fang-Yi Tu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Te-An Chiu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Tung-Ta Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| | - Wen-Yueh Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, Taipei 10617, Taiwan
| |
Collapse
|