1
|
Bilyachenko AN, Khrustalev VN, Huang Z, Dubinina KD, Shubina ES, Lobanov NN, Sun D, Alegria ECBA, Pombeiro AJL. An ionic Cu 9Na 4-phenylsilsesquioxane/bis(triphenylphosphine)iminium complex: synthesis, unique structure, and catalytic activity. NANOSCALE 2024; 16:19266-19275. [PMID: 39352192 DOI: 10.1039/d4nr02298j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The synthesis of a high nuclear (Cu9Na4) complex 1via the self-assembly of copper(II) phenylsilsesquioxane induced by complexation with bis(triphenylphosphine)iminium chloride (PPNCl) was successfully achieved. This complex, which includes two bis(triphenylphosphine)iminium PPN+ cations, represents the first example of a metallasilsesquioxane/phosphazene compound. The Cu9Na4-silsesquioxane cage demonstrates a nontrivial combination of two pairs of Si6-cyclic/Si4-acyclic silsesquioxane ligands and a fusion of two Si10Cu4Na2 fragments, combined via the central ninth copper ion. The catalytic efficacy of the copper(II) compound (1) was evaluated through the peroxidative oxidation of toluene using tert-butyl hydroperoxide (t-BuOOH) as the oxidant. The primary oxidation products were benzaldehyde (BAL), benzyl alcohol (BOL), and benzoic acid (BAC), with BAC being the predominant product, especially in acetonitrile (NCMe). The formation of cresols, indicating oxidation at the aromatic ring, was observed only in water and under microwave irradiation (MW) in NCMe. Remarkably, the highest total yield of 40.3% was achieved in water with an acidic additive at 80 °C, highlighting the crucial role of the acid additive in enhancing reaction efficiency and selectivity. This study underscores our copper(II) complex as a highly effective catalyst for toluene oxidation, demonstrating its significant potential for fine-tuning reaction parameters to optimize yields and selectivity. The unprecedented structure of the complex and its promising catalytic performance pave the way for further advancements in the fields of metallasilsesquioxane chemistry and catalysis.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Zhibin Huang
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Kristina D Dubinina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay Str. 6, 117198 Moscow, Russia
| | - Di Sun
- Shandong University, Department of Chemistry and Chemical Engineering, Shanda South Road 27, 250100 Jinan, China
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
2
|
Nawaz F, Ali M, Ahmad S, Yong Y, Rahman S, Naseem M, Hussain S, Razzaq A, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Ali N. Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment. CHEMOSPHERE 2024; 364:143014. [PMID: 39121955 DOI: 10.1016/j.chemosphere.2024.143014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Urban residential and industrial growth development affects sustainable and healthful indoor environments. Environmental issues are a global problem. The deterioration of indoor air quality has prompted the creation of several air cleansing techniques. This review explains how carbon-based materials have influenced the development of air purification systems using photocatalysis. These carbon-based materials offer unique properties and advantages in VOC removal processes. Biochar, produced from biomass pyrolysis, provides an environmentally sustainable solution with its porous structure and carbon-rich composition. Carbon quantum dots, with their quantum confinement effects and tunable surface properties, show promise in VOC sensing and removal applications. Polymers incorporating reduced graphene oxide demonstrate enhanced adsorption capabilities owing to the synergistic effects of graphene and polymer matrices. Activated carbon fibers, characterized by their high aspect ratio and interconnected porosity, provide efficient VOC removal with rapid kinetics. With their unique electronic and structural properties, graphitic carbon nitrides offer opportunities for photocatalytic degradation of VOCs under visible light. Catalysts integrated with MXene, a two-dimensional nanomaterial, exhibit enhanced catalytic activity for VOC oxidation reactions. Using various carbon-based materials in VOC removal showcases the versatility and effectiveness of carbon-based approaches in addressing environmental challenges associated with indoor air pollution. Metal-organic-framework materials are carbon-based compounds. It examines the correlation between VOC mineralization and specific characteristics of carbon materials, including surface area, adsorption capability, surface functional groups, and optoelectronic properties. Discussions include the basics of PCO, variables influencing how well catalysts degrade, and degradation mechanisms. It explores how technology will improve in the future to advance studies on healthy and sustainable indoor air quality.
Collapse
Affiliation(s)
- Farooq Nawaz
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Shakeel Ahmad
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yang Yong
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Naseem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sadam Hussain
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology(NUST), Islamabad, 44000, Pakistan.
| | - Abdul Razzaq
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan.
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| |
Collapse
|
3
|
Liu B, Zhang M, Tao Y, Cui Z, Tian W. Research on Oil and Gas Adsorption Optimization Based on CFD Modeling and Process Simulation. ACS OMEGA 2024; 9:29805-29819. [PMID: 39005799 PMCID: PMC11238286 DOI: 10.1021/acsomega.4c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
In the process of oil extraction and refining, some of the liquid light hydrocarbon components will inevitably evaporate into the atmosphere, causing serious air pollution and safety hazards. This paper is focused on oil and gas adsorption systems to comprehensively optimize key parameters by combining computational fluid dynamics (CFD) modeling with process simulation, enabling the efficient treatment of hazardous materials. First, a CFD model of the hydrocarbon adsorption process is established to the porous media model by a user-defined function (UDF). Subsequently, the mass transfer process of oil and gas in porous media is successfully simulated to obtain the gas distribution in an industrial fixed bed adsorption tower. The adsorption tank is intensified, and the gas distribution in the tank is improved by optimizing the height-to-diameter ratio of the equipment and the design of the intake distributor. Third, the cyclic two-tank adsorption model of the pressure swing adsorption (PSA) process is established for key parameters optimization. Finally, the operating parameters and conditions of the PSA process are suspected by considering five factors affecting the adsorption efficiency: adsorption time, adsorption pressure, adsorption temperature, feed flow rate, and purge ratio of the washing step.
Collapse
Affiliation(s)
- Bin Liu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Mengjiao Zhang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ye Tao
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Zhe Cui
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Wende Tian
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| |
Collapse
|
4
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
5
|
Qiao S, He Y, Sun H, Patimisco P, Sampaolo A, Spagnolo V, Ma Y. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. LIGHT, SCIENCE & APPLICATIONS 2024; 13:100. [PMID: 38693126 PMCID: PMC11063167 DOI: 10.1038/s41377-024-01459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
Photoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range. Here we present a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser used as light source in a PAS sensor for trace gas detection. The self-built solid-state laser had an emission wavelength of ~2 μm with Tm:YAP crystal as the gain material, with an excellent wavelength and optical power stability as well as a high beam quality. The wide wavelength tuning range of 9.44 nm covers the absorption spectra of water and ammonia, with a maximum optical power of ~130 mW, allowing dual gas detection with a single laser source. The solid-state laser was used as light source in three different photoacoustic detection techniques: standard PAS with microphone, and external- and intra-cavity quartz-enhanced photoacoustic spectroscopy (QEPAS), proving that solid-state laser is an attractive excitation source in photoacoustic spectroscopy.
Collapse
Affiliation(s)
- Shunda Qiao
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, China
| | - Ying He
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, China
| | - Haiyue Sun
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, China
| | - Pietro Patimisco
- PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola, Bari, Italy
| | - Angelo Sampaolo
- PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola, Bari, Italy
| | - Vincenzo Spagnolo
- PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Via Amendola, Bari, Italy
| | - Yufei Ma
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Mondal SK, Aina P, Rownaghi AA, Rezaei F. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion. Chempluschem 2024; 89:e202300419. [PMID: 38116915 DOI: 10.1002/cplu.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Volatile organic compounds (VOCs) are gases that are emitted into the air from products or processes and are major components of air pollution that significantly deteriorate air quality and seriously affect human health. Different types of metals, metal oxides, mixed-metal oxides, polymers, activated carbons, zeolites, metal-organic frameworks (MOFs) and mixed-matrixed materials have been developed and used as adsorbent or catalyst for diversified VOCs detection, removal, and destruction. In this comprehensive review, we first discuss the general classification of VOCs removal materials and processes and outline the historical development of bifunctional and cooperative adsorbent-catalyst materials for the removal of VOCs from air. Subsequently, particular attention is devoted to design of strategies for cooperative adsorbent-catalyst materials, along with detailed discussions on the latest advances on these bifunctional materials, reaction mechanisms, long-term stability, and regeneration for VOCs removal processes. Finally, challenges and future opportunities for the environmental implementation of these bifunctional materials are identified and outlined with the intent of providing insightful guidance on the design and fabrication of more efficient materials and systems for VOCs removal in the future.
Collapse
Affiliation(s)
- Sukanta K Mondal
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
| | - Peter Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| |
Collapse
|
7
|
Wang J, Qin J, Yang C, Hu Y. Effect of ligand substitution in UiO-66 metal-organic frameworks on the photocatalytic oxidation of acetaldehyde. CHEMOSPHERE 2023; 340:139841. [PMID: 37597629 DOI: 10.1016/j.chemosphere.2023.139841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
A series of functionalized X-UiO-66 (X = NH2, H, Br and NO2) materials were prepared using a hydrothermal method and modified with various ligands. Their photocatalytic activity was evaluated by the oxidation of acetaldehyde. Experimental results show that the introduction of different ligands significantly influences the physicochemical properties of UiO-66. Br-UiO-66 exhibited the highest photocatalytic activity and CO2 selectivity of 85.6% and 85.7%, respectively. Photochemical properties reveal that -Br functional group facilitate the separation of photogenerated electrons and holes, significantly improving their transfer and oxygen reduction. As a result, an increased number of hydroxyl and superoxide radicals can form, improving the efficiency of the photocatalytic reaction. Br-UiO-66 accumulates fewer intermediates on its surface and still shows excellent photocatalytic activity and structural stability after 24 h of dynamic reaction. This work demonstrates the excellent adsorption and catalytic oxidation performance of Br-UiO-66 towards acetaldehyde and may provide new ideas for researching catalysts in the photocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Jun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Junxian Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Changqing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Mago A, Yang YS, Shim JH, John AA. Wearable Device for Cumulative Chlorobenzene Detection and Accessible Mitigation Strategies. SENSORS (BASEL, SWITZERLAND) 2023; 23:7904. [PMID: 37765961 PMCID: PMC10536231 DOI: 10.3390/s23187904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Chronic exposure to low concentrations of volatile organic compounds (VOCs), such as chlorobenzene, is not being monitored in industrializing countries, although VOC exposure is associated with carcinogenic, organ-toxic, and endocrine-disrupting effects. Current VOC-sensing technologies are inaccessible due to high cost, size, and maintenance or are ineffective due to poor sensitivity or reliability. In particular, marginalized individuals face barriers to traditional prescription VOC treatments due to cost, lack of transportation, and limited access to physicians; thus, alternative treatments are needed. Here, we created a novel cumulative wearable color-changing VOC sensor with a paper-based polydiacetylene sensor array for chlorobenzene. With a single smartphone picture, the sensor displays 14 days of logged chlorobenzene exposure data, interpreted by machine-learning (ML) techniques, including principal component analysis. Further, we explored the efficacy of affordable and accessible treatment options to mitigate a VOC's toxic effects. Vitamin D and sulforaphane are naturally found in cruciferous vegetables, like broccoli, and can be used to treat chlorobenzene-mediated bone degradation. Our platform combines these components into a smartphone app that photographs the sensor's colorimetric data, analyzes the data via ML techniques, and offers accessible treatments based on exposure data.
Collapse
Affiliation(s)
- Aryan Mago
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aijaz Ahmad John
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
9
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
10
|
Siu B, Chowdhury AR, Yan Z, Humphrey SM, Hutter T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Kuspanov Z, Baglan B, Baimenov A, Issadykov A, Yeleuov M, Daulbayev C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163914. [PMID: 37149164 DOI: 10.1016/j.scitotenv.2023.163914] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The growing environmental and energy crises have prompted researchers to seek new solutions, including large-scale photocatalytic environmental remediation and the production of solar hydrogen using photocatalytic materials. To achieve this goal, scientists have developed numerous photocatalysts with high efficiency and stability. However, the large-scale application of photocatalytic systems under real-world conditions is still limited. These limitations arise at every step, including the large-scale synthesis and deposition of photocatalyst particles on a solid support, and the development of an optimal design with high mass transfer and efficient photon absorption. The purpose of this article is to provide a detailed description of the primary challenges and potential solutions encountered in scaling up photocatalytic systems for use in large-scale water and air purification and solar hydrogen production. Additionally, based on a review of current pilot developments, we draw conclusions and make comparisons regarding the main operating parameters that affect performance, as well as propose strategies for future research.
Collapse
Affiliation(s)
- Zhengisbek Kuspanov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation
| | - Bakbolat Baglan
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Alzhan Baimenov
- Al Farabi Kazakh National University, 050040 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Aidos Issadykov
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Mukhtar Yeleuov
- Satbayev University, 050013 Almaty, Kazakhstan; Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
| | - Chingis Daulbayev
- Institute of Nuclear Physics, 050032 Almaty, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| |
Collapse
|
12
|
Phan NHT, Nguyen CC, Nguyen Dinh MT. A glucose-assisted redox hydrothermal route to prepare a Mn-doped CeO 2 catalyst for the total catalytic oxidation of VOCs. RSC Adv 2023; 13:13354-13364. [PMID: 37143917 PMCID: PMC10152232 DOI: 10.1039/d3ra00957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
In this study, a novel glucose-assisted redox hydrothermal method has been presented to prepare an Mn-doped CeO2 catalyst (denoted as Mn-CeO2-R) for the first time. The obtained catalyst contains uniform nanoparticles with a small crystallite size, a large mesopore volume, and rich active surface oxygen species. Such features collectively contribute to improving the catalytic activity for the total catalytic oxidation of methanol (CH3OH) and formaldehyde (HCHO). Interestingly, the large mesopore volume feature of the Mn-CeO2-R samples could be considered an essential factor to eliminate the diffusion limit, favoring the total oxidation of toluene (C7H8) at high conversion. Therefore, the Mn-CeO2-R catalyst outperforms both bare CeO2 and conventional Mn-CeO2 catalysts with T 90 values of 150 °C and 178 °C for HCHO and CH3OH, respectively, and 315 °C for C7H8, at a high GHSV of 60 000 mL g-1 h-1. Such robust catalytic activities signify a potential utilization of Mn-CeO2-R for the catalytic oxidation of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Nga Hang Thi Phan
- The University of Danang, School of Medicine and Pharmacy Danang 550000 Vietnam
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University Danang City 550000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University Da Nang 550000 Vietnam
| | - Minh Tuan Nguyen Dinh
- The University of Danang, University of Science and Technology 54, Nguyen Luong Bang Danang City Vietnam
| |
Collapse
|
13
|
Lamprea Pineda PA, Demeestere K, Sabbe M, Bruneel J, Van Langenhove H, Walgraeve C. Effect of (bio)surfactant type and concentration on the gas-liquid equilibrium partitioning of hydrophobic volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130320. [PMID: 36372019 DOI: 10.1016/j.jhazmat.2022.130320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The biological removal of hydrophobic volatile organic compounds (VOCs) is limited by their low water solubility and, therefore, low bioavailability. The addition of surfactants is a promising strategy, but to gain understanding and broaden its applicability, its effect on the solubility of hydrophobic VOCs should be investigated. This study evaluates the effect of 2 synthetic surfactants (sodium dodecyl sulfate (SDS) and Tween 80) and 3 biological surfactants (surfactin, rhamnolipid and saponin) on the gas-to-liquid equilibrium partitioning coefficient (KGL) of 7 hydrophobic VOCs at different critical micelle concentrations (CMC). For all VOCs, a decrease in their KGL was observed when a (bio)surfactant was added at 1 and 3 CMC. The highest decrease in KGL (71 - 96 %) was observed for all compounds when SDS was added at 3 CMC, whereas the smallest effect was noticed when Tween 80 or surfactin (5.1 - 75 %) were added at both concentrations. The results are explained in terms of the (bio)surfactant and VOC physical-chemical properties (e.g. CMC and polarity). This is the first study evaluating the effect of biological surfactants on KGL. These fundamental data are essential to improve the design and modeling of air treatment systems using (bio)surfactants.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Kristof Demeestere
- Research group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Max Sabbe
- Research group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Joren Bruneel
- Trevi nv, Air Division, Dulle-Grietlaan 17/1, Ghent 9050, Belgium.
| | - Herman Van Langenhove
- Research group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Christophe Walgraeve
- Research group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
14
|
Zhou X, Yan Z, Zhou X, Wang C, Liu H, Zhou H. RETRACTED: An assessment of volatile organic compounds pollutant emissions from wood materials: A review. CHEMOSPHERE 2022; 308:136460. [PMID: 36116618 DOI: 10.1016/j.chemosphere.2022.136460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Xihe Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Zhisong Yan
- Zhejiang Shiyou Timber Co., Ltd., 1111 Shiyuan West Road, Huzhou, Zhejiang, 313009, China
| | - Xiang Zhou
- Sinomaple Furnishing (Jiangsu) Co., Ltd., 99 Fen'an Dong Lu, Wujiang District, Suzhou, Jiangsu, 215200, China
| | - Chengming Wang
- Holtrop & Jansma (Qingdao) Environmental Protection Equipment Co., Ltd., 8 Tongshun Road, High-tech District, Qingdao, Shandong, 266114, China
| | - Hailiang Liu
- Jiangsu Shenmao Plastic Products Co., Ltd., Wood Industrial District, Siyang, Jiangsu, 223798, China
| | - Handong Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
15
|
Farrokhpour H, Gerami M, Jouypazadeh H. Be 2C monolayer as an efficient adsorbent of toxic volatile organic compounds: theoretical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2132184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Mehrdad Gerami
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
16
|
Wu J, Wang J, Liu C, Nie C, Wang T, Xie X, Cao J, Zhou J, Huang H, Li D, Wang S, Ao Z. Removal of Gaseous Volatile Organic Compounds by a Multiwalled Carbon Nanotubes/Peroxymonosulfate Wet Scrubber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13996-14007. [PMID: 36083161 DOI: 10.1021/acs.est.2c03590] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a wet scrubber coupled with a persulfate-based advanced oxidation process [carbocatalysts/peroxymonosulfate (PMS)] was demonstrated to efficiently remove gaseous volatile organic compounds (VOCs). The removal efficiency of a representative VOC, styrene, was stable at above 98%, and an average mineralization rate was achieved at 76% during 2 h. The removal efficiency of the carbocatalysts/PMS wet scrubber for styrene was much higher than that of pure water, carbocatalysts/water, or PMS/water systems. Quenching experiments, electron spin resonance spectroscopy, in-situ Raman spectroscopy and density functional theory (DFT) calculations indicated that singlet oxygen (1O2) and oxidative complexes are the main reactive oxygen species and that both contributed to styrene removal. In particular, carbonyl groups (C═O) in the carbocatalyst were found to be the active sites for activating PMS during styrene oxidation. The role of 1O2 was discovered to be benzene ring breaking and a possible non-radical oxidation pathway of styrene was proposed based on time-of-flight mass spectroscopy which was further verified by DFT calculations. In particular, the electron transfer process of multi world carbon nanotubes-PMS* in styrene oxidation was further studied in-depth by experiments and DFT calculations. The unstable vinyl on styrene was simultaneously degraded by the oxidative complexes and 1O2 into benzene, and finally oxidized by 1O2 into H2O and CO2. This study provides an effective method for VOC removal and clearly illustrates the complete degradation mechanism of styrene in a nonradical PMS-based process by a wet scrubber.
Collapse
Affiliation(s)
- Jieman Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiangen Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chuying Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chunyang Nie
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Teng Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiachun Cao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhimin Ao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
17
|
The Synthesis of Cu–Mn–Al Mixed-Oxide Combustion Catalysts by Co-Precipitation in the Presence of Starch: A Comparison of NaOH with Organic Precipitants. Catalysts 2022. [DOI: 10.3390/catal12101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cu–Mn mixed oxides are well known as active combustion catalysts. The common method for their synthesis is based on co-precipitation, with NaOH as a precipitant, and is burdened with the possibility of introducing undesired Na contamination. This work describes the use of two organic bases, tetrabutylammonium hydroxide and choline hydroxide, as precipitating agents in a novel alkali-free route for Cu–Mn–Al catalyst synthesis. To obtain fine crystalline precursors, which are considered advantageous for the preparation of active catalysts, co-precipitation was carried out in the presence of starch gel. Reference materials prepared with NaOH in the absence of starch were also obtained. Mixed oxides were produced by calcination at 450 °C. The precursors contained MnCO3 doped with Cu and Al, and an admixture of amorphous phases. Those prepared in the presence of starch were less crystalline and retained biopolymer residues. The combustion of these residues during calcination enhanced the formation of larger amounts of the Cu1.5Mn1.5O4 spinel phase, with better crystallinity in comparison to catalysts prepared from conventionally synthesized precursors. Tests of toluene combustion demonstrated that the catalysts prepared with starch performed better than those obtained in starch-free syntheses, and that the mixed oxides obtained by the alkali-free route were more active than catalysts prepared with NaOH. Catalytic data are discussed in terms of property–performance relationships.
Collapse
|
18
|
Wei Z, He Y, Xiao X, Huang Z, Jiao H. Coupled catalytic-biodegradation of toluene over manganese oxide-coated catalytic membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73552-73562. [PMID: 35624373 DOI: 10.1007/s11356-022-20697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) harm human health and the ecological environment. This work demonstrated manganese oxide catalytic membrane coupled to biodegradation of toluene in a catalytic membrane biofilm rector (CMBfR). Toluene removal efficiency in CMBfR was up to 91% in a 200-day operation. Manganese oxide combined to membrane biofilm reactor could promote degradation of toluene. Manganese oxide catalysts were characterized by XRD, Raman, XPS, and FT-IR. Raman and XPS spectra verified the existence of Mn defects, adsorbed oxygen species, and the oxygen vacancy, which was catalytic of toluene on the Mn oxides coated membranes significantly. Pseudomonas, Hydrogenophaga, Flavobacterium, Bacillus, Clostridium and Prosthecobacter were the dominant bacteria of toluene degradation. Mn oxides catalysis could degrade toluene into intermediate products; these products were entered into the biological phase eventually metabolized to CO2 and H2O. These results show that the catalytic membrane biofilm reactor is achievable and opens new possibilities for applying the catalytic membrane biofilm reactor to VOCs treatment.
Collapse
Affiliation(s)
- Zaishan Wei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yiming He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiaoliang Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhenshan Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huaiyong Jiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Controlled synthesis of niobium and rare earth mixed oxides for catalytic combustion of chlorinated VOCs in the synthesis process of polyether polyol and polyurethane. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Reaction Mechanisms of Toluene Decomposition in Non-Thermal Plasma: How does It Compare with Benzene? FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Adebayo BO, Rezaei F. Modeling of temperature swing adsorption-oxidation of volatile organic compounds. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Lin YC, Liang FY, Fu CK, Chang KL. Removal of Isopropanol by synergistic non-thermal plasma and photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126874. [PMID: 34879538 DOI: 10.1016/j.jhazmat.2021.126874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The dielectric barrier discharge (DBD) of non-thermal plasmas was combined with a self-made photocatalyst to remove isopropanol (IPA). Synthesis conditions for the novel photocatalyst, including calcination temperature and copper loading, were varied before photocatalysis to obtain at the optimal reaction efficiency. The effects of initial IPA concentration, oxygen content, and catalyst dosage were also observed. Finally, catalyst reusability was analyzed. X-ray photoelectron spectroscopy fitting revealed Ti, Cu, C, and O peaks in the synthesized catalyst. After a 60-min reaction with 100% oxygen as the carrying gas, nearly 100% of the IPA was converted. Overall, the optimal IPA conversion efficiency and acetone and carbon dioxide selectivity were achieved when the photocatalyst was synthesized at a calcination temperature of 550 °C and copper loading of 1.8%, along with a 100% oxygen carrying gas and a 3-mm discharge gap.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Fang-Yu Liang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Cheng-Kuei Fu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
A highly efficient multi-stage dielectric barrier discharge (DBD)-catalytic system for simultaneous toluene degradation and O3 elimination. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Jonidi Jafari A, Charkhloo E, Pasalari H. Urban air pollution control policies and strategies: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1911-1940. [PMID: 34900316 PMCID: PMC8617239 DOI: 10.1007/s40201-021-00744-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/20/2021] [Indexed: 06/01/2023]
Abstract
A wide range of policies, strategies, and interventions have been implemented to improve air quality all over the world. This systematic review comprehensively appraises the policies and strategies on air pollutants controls enacted in different countries, worldwide. Three databases, Web of Science, PubMed and Scopus, were used for the search. After screening, a total of 114 eligible manuscripts were selected from 2219 documents for further analysis. Selected articles were divided into two categories: (1) articles focusing on introducing the policies and strategies enacted for controlling air pollution in different countries, and (2) articles which focused on different policies and strategies to control one or more specific pollutants. In the former one, urban air pollution control strategies and policies were divided into four categories, namely, general strategies and policies, transportation, energy, and industry. In case of latter category, policies and strategies focused on controlling six pollutants (PM, SO2, NO2, VOCS, O3 and photochemical smog). The results indicated that, the most common policies and strategies enacted in most countries are pertinent to the transportation sector. Changing energy sources, in particular elimination or limited use of solid fuels, was reported as an effective action by governments to reduce air pollution. Overall, most policies enacted by governments can be divided into three general categories: (a) incentive policies such as implementing a free public transportation program to use fewer private cars, (b) supportive policies such as paying subsidies to change household fuels, and (c) punitive policies such as collecting tolls for cars to enter the congestion charging areas. Depending on the circumstances, these policies are implemented alone or jointly. In addition to the acceptance of international agreements to reduce air pollution by governments, greater use of renewable energy, clean fuels, and low-pollution or no-pollution vehicles such as electric vehicles play an important role in reducing air pollution.
Collapse
Affiliation(s)
- Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Esmail Charkhloo
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
The Influence of Precursor on the Preparation of CeO2 Catalysts for the Total Oxidation of the Volatile Organic Compound Propane. Catalysts 2021. [DOI: 10.3390/catal11121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CeO2 catalysts were prepared by a precipitation method using either (NH4)2Ce(NO3)6 or Ce(NO3)3, as CeIV or CeIII precursors respectively. The influence of the different precursors on catalytic activity was evaluated for the total oxidation of propane with water present in the feed. The catalyst prepared using the CeIV precursor was more active for propane total oxidation. The choice of precursor influenced catalyst properties such as surface area, reducibility, morphology, and active oxygen species. The predominant factor associated with the catalytic activity was related to the formation of either CeO2.nH2O or Ce2(OH)2(CO3)2.H2O precipitate species, formed prior to calcination. The formation of CeO2.nH2O resulted in enhanced surface area which was an important factor for controlling catalyst activity.
Collapse
|
26
|
Bhat A, Venkat M, Chen X, Ohtani H, Ellwood K, Misovski T, Schwank JW. Chemical surface modification of beaded activated carbon: A strategy to inhibit heel accumulation from VOC. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Recent Advances in the Catalytic Treatment of Volatile Organic Compounds: A Review Based on the Mixture Effect. Catalysts 2021. [DOI: 10.3390/catal11101218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Catalytic total oxidation is an efficient technique for treating VOCs, which are mainly emitted by solvent-based industrial processes. However, studies of the catalytic oxidation of VOCs in combination with other pollutants are very limited, despite the fact that this is a key step of knowledge before industrial application. During the oxidation reaction, the behavior of a molecule may change depending on the reaction mixture. For the treatment of an effluent loaded with VOCs, it is necessary to carefully select not only the catalytic material to be used but also the reaction conditions. Indeed, the catalytic oxidation of a component in a VOCs mixture is not predicted solely from the behavior of individual component. Thus, the objective of this small review is to carry out a study on the effect observed in the case of the oxidation of a VOCs mixture or in the presence of water, NOX or sulfur compounds.
Collapse
|
28
|
Catalytic Abatement of Volatile Organic Compounds and Soot over Manganese Oxide Catalysts. MATERIALS 2021; 14:ma14164534. [PMID: 34443062 PMCID: PMC8399866 DOI: 10.3390/ma14164534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
A set of manganese oxide catalysts was synthesized via two preparation techniques: solution combustion synthesis (Mn3O4/Mn2O3-SCS and Mn2O3-SCS) and sol-gel synthesis (Mn2O3-SG550 and Mn2O3-SG650). The physicochemical properties of the catalysts were studied by means of N2-physisorption at −196 °C, X-ray powder diffraction, H2 temperature-programmed reduction (H2-TPR), soot-TPR, X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM). The high catalytic performance of the catalysts was verified in the oxidation of Volatile Organic Compounds (VOC) probe molecules (ethene and propene) and carbon soot in a temperature-programmed oxidation setup. The best catalytic performances in soot abatement were observed for the Mn2O3-SG550 and the Mn3O4/Mn2O3-SCS catalysts. The catalytic activity in VOC total oxidation was effectively correlated to the enhanced low-temperature reducibility of the catalysts and the abundant surface Oα-species. Likewise, low-temperature oxidation of soot in tight contact occurred over the Mn2O3-SG550 catalyst and was attributed to high amounts of surface Oα-species and better surface reducibility. For the soot oxidation in loose contact, the improved catalytic performance of the Mn3O4/Mn2O3-SCS catalyst was attributed to the beneficial effects of both the morphological structure that—like a filter—enhanced the capture of soot particles and to a probable high amount of surface acid-sites, which is characteristic of Mn3O4 catalysts.
Collapse
|
29
|
Adebayo BO, Trautman J, Al-Naddaf Q, Rownaghi AA, Rezaei F. Passive Control of Indoor Formaldehyde by Mixed-Metal Oxide Latex Paints. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9255-9265. [PMID: 34101438 DOI: 10.1021/acs.est.1c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work reports the incorporation of mixed-metal oxides (MMOs) such as Si/Ti and Si/Zr into latex paints in the form of thin coatings for permanent trapping of indoor formaldehyde. The formaldehyde removal performance of the surface coatings was evaluated in a lab-scale indoor air chamber, and the results were compared with those of powder analogues. Due to the pore blockage by the latex, the incorporation led to 6-30% reduction in adsorption capacity and 50-70% drop in the adsorption rate for MMO-latex paints relative to their powder MMO analogues. Under the operating conditions of concentration, temperature, and relative humidity, the Si/Zr-latex paints outperformed the Si/Ti counterparts. It was also observed that performance could decrease over excessive loading, for example, Si/Zr-latex paint with 15/1 Si/Zr weight ratio showed a 20% lower adsorption capacity than that of the Si/Zr-latex paint with 25/1 Si/Zr ratio at 5 ppmv, 25 °C, and 70% RH. While high temperature greatly reduced the adsorption rate of the MMO-latex paints, high humidity slightly promoted the rate of formaldehyde capture. In 10 L, flow-through chamber tests, 25Si/Zr-latex paint reduced 5 ppmv formaldehyde by up to 60% at 25 °C and 70% RH with an adsorption rate of 0.34 ppmv/h. Overall, this study highlights the potential of MMO-latex paints with optimized formation for the efficient abatement of indoor aldehydes.
Collapse
Affiliation(s)
- Busuyi O Adebayo
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Jacob Trautman
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Qasim Al-Naddaf
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| |
Collapse
|
30
|
|
31
|
Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande MB. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200136] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Toru Wakihara
- Graduate School of Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431203 Maharashtra, India
| |
Collapse
|
33
|
Sustainable Reduction of the Odor Impact of Painting Wooden Products for Interior Design. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The construction and building field represents a key sector for the recent Circular Economy Action Plan (March 2020). Therefore, the production of low impact materials represents an essential step towards the implementation of a sustainable market. In this regard, the present paper focused on the production of painting wooden products for interior design. These industrial processes include an essential phase consisting of the reduction of odor emissions, which produce negative impacts on the environment and a persistent annoyance for the population close to the facilities. The main cause of the odor emissions in wood painting manufacturing is the production of volatile organic compounds (VOCs). In this context, the present research aimed to develop an innovative process able to combine the use of lower impact paints with a more efficient UV system for the abatement of the emissions.
Collapse
|
34
|
Adebayo BO, Newport K, Yu H, Rownaghi AA, Liang X, Rezaei F. Atomic Layer Deposited Ni/ZrO 2-SiO 2 for Combined Capture and Oxidation of VOCs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39318-39334. [PMID: 32805859 DOI: 10.1021/acsami.0c11666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports on the development of novel Ni nanoparticle-deposited mixed-metal oxides ZrO2-SiO2 through atomic layer deposition (ALD) method and their application in combined capture and oxidation of benzene, as a model compound of aromatic VOCs. Concentrating ppm-level VOCs in situ, before their oxidation, offers a practical approach to reduce the catalyst inventory and capital cost associated with VOC emissions abatement. The benzene vapor adsorption isotherms were measured at 25 °C and in the pressure range of 0 to benzene saturation vapor pressure thereof (0.13 bar). In the combined capture-reaction tests, the materials were first exposed to ca. 86 100 ppmv benzene vapor at 25 °C, followed by desorption and catalytic oxidation while raising the bed temperature to 250 °C. The textural properties revealed that ALD of Ni or ZrO2 on SiO2 decreased surface area and pore volume, while sequential doping with ZrO2 and then Ni caused the otherwise. The benzene vapor adsorption isotherms followed the type-IV isotherm classification, revealing a combination of monolayer-multilayer and capillary condensation adsorption mechanisms in sequence. At saturation vapor pressure, an average equilibrium adsorption capacity of 15 mmol/g was obtained across the materials. However, the dynamic adsorption capacities were up to 50% less than the corresponding equilibrium uptake for the materials. Benzene desorption temperature was observed around 90 °C, and conversion of 85-95% and TOF of 1.28-16.42 mmolC6H6/molNi/s were obtained over the materials, with 3Ni/ZrO2-SiO2, prepared with 3 ALD cycles, exhibiting the maximum conversion and TOF indicating synergistic effects of Ni nanoparticles and ZrO2 support based on the number of ALD cycles. However, the yields of CO2 and H2O were about 5% and 40%, respectively. The small value of the CO2 yield was hypothesized to be due to simultaneous high-temperature adsorption of CO2 as the catalytic reaction progressed. The high adsorption affinity, low desorption temperature, and high catalytic activity of the materials investigated in this study made these materials as promising candidates for the abatement of BTX.
Collapse
Affiliation(s)
- Busuyi O Adebayo
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Han Yu
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Xinhua Liang
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N State Street, Rolla, Missouri 65409, United States
| |
Collapse
|
35
|
Palma V, Cortese M, Renda S, Ruocco C, Martino M, Meloni E. A Review about the Recent Advances in Selected NonThermal Plasma Assisted Solid-Gas Phase Chemical Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1596. [PMID: 32823944 PMCID: PMC7466689 DOI: 10.3390/nano10081596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
Abstract
Plasma science has attracted the interest of researchers in various disciplines since the 1990s. This continuously evolving field has spawned investigations into several applications, including industrial sterilization, pollution control, polymer science, food safety and biomedicine. nonthermal plasma (NTP) can promote the occurrence of chemical reactions in a lower operating temperature range, condition in which, in a conventional process, a catalyst is generally not active. The aim, when using NTP, is to selectively transfer electrical energy to the electrons, generating free radicals through collisions and promoting the desired chemical changes without spending energy in heating the system. Therefore, NTP can be used in various fields, such as NOx removal from exhaust gases, soot removal from diesel engine exhaust, volatile organic compound (VOC) decomposition, industrial applications, such as ammonia production or methanation reaction (Sabatier reaction). The combination of NTP technology with catalysts is a promising option to improve selectivity and efficiency in some chemical processes. In this review, recent advances in selected nonthermal plasma assisted solid-gas processes are introduced, and the attention was mainly focused on the use of the dielectric barrier discharge (DBD) reactors.
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenio Meloni
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy; (V.P.); (M.C.); (S.R.); (C.R.); (M.M.)
| |
Collapse
|
36
|
Adebayo BO, Krishnamurthy A, Rownaghi AA, Rezaei F. Toluene Abatement by Simultaneous Adsorption and Oxidation over Mixed-Metal Oxides. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Busuyi O. Adebayo
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 North State Street, Rolla, Missouri 65409, United States
| | - Anirudh Krishnamurthy
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 North State Street, Rolla, Missouri 65409, United States
| | - Ali A. Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 North State Street, Rolla, Missouri 65409, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 North State Street, Rolla, Missouri 65409, United States
| |
Collapse
|
37
|
Zhang G, Peyravi A, Hashisho Z, Sun Z, Liu Y, Zheng S, Zhong L. Integrated adsorption and photocatalytic degradation of VOCs using a TiO2/diatomite composite: effects of relative humidity and reaction atmosphere. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00168f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The optimal relative humidity condition for VOC degradation is related to the length of the carbon chain of VOCs.
Collapse
Affiliation(s)
- Guangxin Zhang
- School of Materials Science and Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
- School of Chemical and Environmental Engineering
| | - Arman Peyravi
- Department of Civil and Environmental Engineering
- University of Alberta
- Edmonton
- Canada
| | - Zaher Hashisho
- Department of Civil and Environmental Engineering
- University of Alberta
- Edmonton
- Canada
| | - Zhiming Sun
- School of Chemical and Environmental Engineering
- China University of Mining & Technology (Beijing)
- Beijing 100083
- PR China
| | - Yangyu Liu
- School of Chemical and Environmental Engineering
- China University of Mining & Technology (Beijing)
- Beijing 100083
- PR China
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering
- China University of Mining & Technology (Beijing)
- Beijing 100083
- PR China
| | - Lexuan Zhong
- Department of Mechanical Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
38
|
Wang S, Bai P, Wei Y, Liu W, Ren X, Bai J, Lu Z, Yan W, Yu J. Three-Dimensional-Printed Core-Shell Structured MFI-Type Zeolite Monoliths for Volatile Organic Compound Capture under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38955-38963. [PMID: 31545028 DOI: 10.1021/acsami.9b13819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Crystalline aluminosilicate zeolites with high sorption capacity and low production cost have been recognized as a promising adsorbent for volatile organic compound (VOC) capture. However, the ubiquitous water vapor in the VOC streams may compete with VOCs during the practical separation process because of the hydrophilic property of aluminosilicate zeolites. Herein, a self-supporting core-shell structured MFI-type zeolite monolith was fabricated by 3D-printing aluminosilicate ZSM-5 zeolites as the core, followed by coating silicalite-1 zeolites as a hydrophobic shell via post-hydrothermal crystallization. Natural sepiolite nanofibers (SNFs) were employed as printing ink additives for reinforcing the mechanical stability of 3D-printed ZSM-5 monoliths. Colloidal silica was also introduced into the printing inks, affording continuous growth of silicalite-1 layers (with a thickness of ∼200 nm) over ZSM-5 crystals. Such core-shell structured MFI-type zeolite monoliths exhibited superior dynamic adsorption performance for toluene at 298 K under humid conditions (relative humidity: 50%), with a saturated adsorption capacity of 44.3 mg/g. This work provides a facile strategy for designing self-supporting zeolite monoliths with core-shell architectures for adsorption/separation and other advanced applications.
Collapse
Affiliation(s)
| | | | | | - Wei Liu
- School of Mechanical and Aerospace Engineering , Jilin University , Changchun 130025 , China
| | | | | | | | | | | |
Collapse
|