1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Kalawoun H, Ciotonea C, Marinova M, Gennequin C, Delattre F. Investigation of the physico-chemical properties of Ni-Mg-Al-La catalysts from ultrasound-assisted synthesis. ULTRASONICS SONOCHEMISTRY 2024; 104:106806. [PMID: 38377803 PMCID: PMC10884977 DOI: 10.1016/j.ultsonch.2024.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
This work reports on the ultrasonic synthesis of layered double hydroxides (LDH), also known as hydrotalcite-type materials. We have studied the influence of ultrasonic irradiation parameters (power, time, temperature) on the physicochemical properties of Ni2Mg4Al1.8La0.2 hydrotalcite-type precursors and related mixed oxides (MO). The low-frequency acoustic cavitation (22 kHz) was applied during the precipitation and aging steps of co-precipitation synthesis and the results were compared to the classical preparation route. The materials were characterized by ATR-FTIR, XRD, N2 adsorption-desorption, SEM-EDX, S/TEM-HAADF, and XPS. Using the combination of acoustic cavitation-assisted precipitation and aging steps, XRD experiments show a higher purity hydrotalcite phase and a better incorporation of lanthanum ions into the LDH structure. As expected, morphological characterization shows a reduction in average crystallite size and an increase in surface area and pore volume, combined with a drastic reduction in synthesis time (45 min at room temperature versus 19 h at 60 °C in conventional synthesis). The insertion of a larger quantity of La is observed by S/TEM-EDSX mapping which also shows a better distribution of lanthanum atoms within the LDH and mixed oxide structures.
Collapse
Affiliation(s)
- H Kalawoun
- Unité de Chimie Environnementale et Interactions sur le Vivant UCEIV), UR 4492, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - C Ciotonea
- Unité de Chimie Environnementale et Interactions sur le Vivant UCEIV), UR 4492, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - M Marinova
- Unité Matériaux et Transformations (UMET), UMR 8207, Institut Michel-Eugène Chevreul, Université de Lille, 59000 Lille, France
| | - C Gennequin
- Unité de Chimie Environnementale et Interactions sur le Vivant UCEIV), UR 4492, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - F Delattre
- Unité de Chimie Environnementale et Interactions sur le Vivant UCEIV), UR 4492, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France.
| |
Collapse
|
4
|
Vikrant K, Kim KH. Gas-phase hydrogenation of furfural into value-added chemicals: The critical role of metal-based catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166882. [PMID: 37678523 DOI: 10.1016/j.scitotenv.2023.166882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Furfural (FF: aldehyde derivable from lignocellulosic biomass) has been widely recognized as a versatile building block for eco-friendly and sustainable applications to reduce industrial reliance on fossil-fuel carbon sources. Hydrogenation of FF, in particular, is recognized as one of the most effective routes for producing various value-added chemicals (e.g., furfuryl alcohol and 2-methylfuran). The gas-phase FF hydrogenation reaction offers economic and environmental advantages over its liquid-phase counterpart in conversion efficiency, product selectivity, and kinetics. The operation of the former does not require high hydrogen pressures or hazardous solvents while not generating undesirable by-products (due to reduced selectivity toward the ring-opening reaction). In this context, the utility of noble and non-noble metal catalyst systems has been recognized for their potential to induce effective FF hydrogenation in the gas phase. The present review addresses current understandings and recent developments in research on gas-phase FF hydrogenation and the factors governing the performance of metal-based catalysts (e.g., materials and surface chemistry; conversion efficiency; product selectivity; and the mechanisms, pathways, and kinetics of the associated reactions). Current shortcomings and research avenues are also discussed to help establish a roadmap for future development of the gas-phase FF hydrogenation technology and associated disciplines. Overall, the present review is expected to offer much-needed insights into the scalability of metal-based catalytic systems for efficient FF hydrogenation in the gas phase.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Sakr AAE, Abd El-Hafiz DR, Elgabry O, Abdullah ES, Ebiad MA, Zaki T. Visible light photoreforming of greenhouse gases by nano Cu-Al LDH intercalated with urea-derived anions. RSC Adv 2023; 13:33541-33558. [PMID: 38020006 PMCID: PMC10652186 DOI: 10.1039/d3ra06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
The accumulation of anthropogenic greenhouse gases (GHGs) in the atmosphere causes global warming. Global efforts are carried out to prevent temperature overshooting and limit the increase in the Earth's surface temperature to 1.5 °C. Carbon dioxide and methane are the largest contributors to global warming. We have synthesized copper-aluminium layered double hydroxide (Cu-Al LDH) catalysts by urea hydrolysis under microwave (MW) irradiation. The effect of MW power, urea concentration, and MII/MIII ratios was studied. The physicochemical properties of the prepared LDH catalysts were characterized by several analysis techniques. The results confirmed the formation of the layered structure with the intercalation of urea-derived anions. The urea-derived anions enhanced the optical and photocatalytic properties of the nano Cu-Al LDH in the visible-light region. The photocatalytic activity of the prepared Cu-Al LDH catalysts was tested for greenhouse gas conversion (CH4, CO2, and H2O) under visible light. The dynamic gas mixture flow can pass through the reactor at room temperature under atmospheric pressure. The results show a high conversion percentage for both CO2 and CH4. The highest converted amounts were 7.48 and 1.02 mmol mL-1 g-1 for CH4 and CO2, respectively, under the reaction conditions. The main product was formaldehyde with high selectivity (>99%). The results also show the stability of the catalysts over several cycles. The current work represents a green chemistry approach for efficient photocatalyst synthesis, visible light utilization, and GHGs' conversion into a valuable product.
Collapse
Affiliation(s)
- Ayat A-E Sakr
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Dalia R Abd El-Hafiz
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| | - Osama Elgabry
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Eman S Abdullah
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Mohamed A Ebiad
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Tamer Zaki
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| |
Collapse
|
6
|
Wen Q, Yuan X, Zhou Q, Yang HJ, Jiang Q, Hu J, Guo CY. Solvent- and Co-Catalyst-Free Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Recyclable Bifunctional Niobium Complexes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093531. [PMID: 37176413 PMCID: PMC10179855 DOI: 10.3390/ma16093531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 °C, 1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure). Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and most of them showed high conversion of epoxide. The catalysts have good substrate suitability and are also applicable to a variety of epoxides including diepoxides and good catalytic performances were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the catalysts can be easily recovered by simple filtration and reused for at least five times without obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily for the bifunctional niobium complexes with different halogen ions (3a(Cl-), 3b(Br-), 3c(I-)) and the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Qin Wen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuexin Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qiqi Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hai-Jian Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Juncheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Cardinale AM, Alberti S, Reverberi AP, Catauro M, Ghibaudo N, Fortunato M. Antibacterial and Photocatalytic Activities of LDH-Based Sorbents of Different Compositions. Microorganisms 2023; 11:microorganisms11041045. [PMID: 37110468 PMCID: PMC10144488 DOI: 10.3390/microorganisms11041045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Layered double hydroxides (LDHs) play a fundamental role in the processes for the abatement of pollutants in water, with reference to heavy metal decontamination. The research on the topic is multiobjective target oriented, aiming at combining environmental remediation with the possibility of reusing a sorbent as many times as possible, turning it into a renewable resource. In this study, the antibacterial and catalytic properties of a ZnAl-SO4 LDH and its resulting product after being subjected to a Cr(VI) remediation process are compared. Both solid substrates have also been tested after undergoing a thermal annealing process. The sorbent (previously described and tested for remediation) has been investigated for its antibacterial activity in view of further surgery and drug delivery applications. Finally, its photocatalytic properties have been experimentally tested in the degradation of a model pollutant, i.e., Methyl Orange (MO), under solar-simulated light. Identifying the best recycling strategy for these materials requires an accurate knowledge of their physicochemical properties. The results show that both the antimicrobial activity and the photocatalytic performance may considerably improve after thermal annealing.
Collapse
Affiliation(s)
- Anna Maria Cardinale
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Andrea Pietro Reverberi
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Michelina Catauro
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Nicolò Ghibaudo
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Fortunato
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
8
|
Yu W, Chen S, Zhu J, He Z, Song S. A highly dispersed and surface-active Ag-BTC catalyst with state-of-the-art selectivity in CO2 electroreduction towards CO. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Fierro F, Lamparelli DH, Genga A, Cucciniello R, Capacchione C. I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Jiang L, Yang Q, Xia Z, Yu X, Zhao M, Shi Q, Yu Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO 2 with single-atom catalysts. RSC Adv 2023; 13:5833-5850. [PMID: 36816079 PMCID: PMC9932639 DOI: 10.1039/d2ra08021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The CO2 reduction reaction (CO2RR) into chemical products is a promising and efficient way to combat the global warming issue and greenhouse effect. The viability of the CO2RR critically rests with finding highly active and selective catalysts that can accomplish the desired chemical transformation. Single-atom catalysts (SACs) are ideal in fulfilling this goal due to the well-defined active sites and support-tunable electronic structure, and exhibit enhanced activity and high selectivity for the CO2RR. In this review, we present the recent progress of quantum-theoretical studies on electro- and photo-chemical conversion of CO2 with SACs and frameworks. Various calculated products of CO2RR with SACs have been discussed, including CO, acids, alcohols, hydrocarbons and other organics. Meanwhile, the critical challenges and the pathway towards improving the efficiency of the CO2RR have also been discussed.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qingqing Yang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University Beijing China
| | - Xiaohu Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qiping Shi
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
11
|
Lim AMH, Zeng HC. Controlling Nanosheet Spacing of ZnAl-Layered Double Hydroxide Assemblages for High-Efficiency Hydrogenation of CO 2 to Methanol. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alvin M. H. Lim
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| |
Collapse
|
12
|
Báfero GB, Silva BNN, Leitão AA, Pastore HO. The behavior of aluminum sites in H-[Al]-RUB-18 catalysts: A theoretical-experimental investigation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Yu Q, Li C, Ma D, Zhao J, Liu X, Liang C, Zhu Y, Zhang Z, Yang K. Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Hussien AGS, Polychronopoulou K. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3400. [PMID: 36234525 PMCID: PMC9565677 DOI: 10.3390/nano12193400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer-Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena-Ni-supported catalysts-suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria-such as support basicity and surface area, bimetallic active sites and promoters, and metal-support interaction-are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.
Collapse
Affiliation(s)
- Aseel G. S. Hussien
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
16
|
Yan W, Li Y, Zeng J, Bao W, Zhao H, Li J, Gunawan P, Yu F. Silica-Decorated NiAl-Layered Double Oxide for Enhanced CO/CO 2 Methanation Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3041. [PMID: 36080078 PMCID: PMC9458021 DOI: 10.3390/nano12173041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
CO/CO2 hydrogenation has attracted much attention as a pathway to achieve carbon neutrality and production of synthetic natural gas (SNG). In this work, two-dimensional NiAl layered double oxide (2D NiAl-LDO) has been successfully decorated by SiO2 nanoparticles derived from SiCl4 and used as CO/CO2 methanation catalysts. The as-obtained H-SiO2-NiAl-LDO exhibited a large specific surface area of 201 m2/g as well as high ratio of metallic Ni0 species and surface adsorption oxygen that were beneficial for low-temperature methanation of CO/CO2. The conversion of CO methanation was 99% at 400 °C, and that of CO2 was 90% at 350 °C. At 250 °C, the CO methanation reached 85% whereas that of CO2 reached 23% at 200 °C. We believe that this provides a simple method to improve the methanation performance of CO and CO2 and a strategy for the modification of other similar catalysts.
Collapse
Affiliation(s)
- Wenxia Yan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yangyang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Junming Zeng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wentao Bao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jiangbing Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Poernomo Gunawan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China
| |
Collapse
|
17
|
Morcos C, Seron A, Maubec N, Ignatiadis I, Betelu S. Comprehension of the Route for the Synthesis of Co/Fe LDHs via the Method of Coprecipitation with Varying pH. NANOMATERIALS 2022; 12:nano12091570. [PMID: 35564279 PMCID: PMC9103787 DOI: 10.3390/nano12091570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Co/Fe-based layered double hydroxides (LDHs) are among the most promising materials for electrochemical applications, particularly in the development of energy storage devices, such as electrochemical capacitors. They have also been demonstrated to function as energy conversion catalysts in photoelectrochemical applications for CO2 conversion into valuable chemicals. Understanding the formation mechanisms of such compounds is therefore of prime interest for further controlling the chemical composition, structure, morphology, and/or reactivity of synthesized materials. In this study, a combination of X-ray diffraction, vibrational and absorption spectroscopies, as well as physical and chemical analyses were used to provide deep insight into the coprecipitation formation mechanisms of Co/Fe-based LDHs under high supersaturation conditions. This procedure consists of adding an alkaline aqueous solution (2.80 M NaOH and 0.78 M Na2CO3) into a cationic solution (0.15 M CoII and 0.05 M FeIII) and varying the pH until the desired pH value is reached. Beginning at pH 2, pH increases induce precipitation of FeIII as ferrihydrite, which is the pristine reactional intermediate. From pH > 2, CoII sorption on ferrihydrite promotes a redox reaction between FeIII of ferrihydrite and the sorbed CoII. The crystallinity of the poorly crystalized ferrihydrite progressively decreases with increasing pH. The combination of such a phenomenon with the hydrolysis of both the sorbed CoIII and free CoII generates pristine hydroxylated FeII/CoIII LDHs at pH 7. Above pH 7, free CoII hydrolysis proceeds, which is responsible for the local dissolution of pristine LDHs and their reprecipitation and then 3D organization into CoII4FeII2CoIII2 LDHs. The progressive incorporation of CoII into the LDH structure is accountable for two phenomena: decreased coulombic attraction between the positive surface-charge sites and the interlayer anions and, concomitantly, the relative redox potential evolution of the redox species, such as when FeII is re-oxidized to FeIII, while CoIII is re-reduced to CoII, returning to a CoII6FeIII2 LDH. The nature of the interlamellar species (OH−, HCO3−, CO32− and NO3−) depends on their mobility and the speciation of anions in response to changing pH.
Collapse
Affiliation(s)
- Chérif Morcos
- BRGM, French Geological Survey, 3 Avenue Claude Guillemin, CEDEX 02, 45060 Orleans, France; (C.M.); (N.M.); (I.I.)
- LGC, Chemical Engineering Laboratory, University of Toulouse III, 118 Route de Narbonne, CEDEX 09, 31062 Toulouse, France
| | - Alain Seron
- BRGM, French Geological Survey, 3 Avenue Claude Guillemin, CEDEX 02, 45060 Orleans, France; (C.M.); (N.M.); (I.I.)
- Correspondence: (A.S.); (S.B.)
| | - Nicolas Maubec
- BRGM, French Geological Survey, 3 Avenue Claude Guillemin, CEDEX 02, 45060 Orleans, France; (C.M.); (N.M.); (I.I.)
| | - Ioannis Ignatiadis
- BRGM, French Geological Survey, 3 Avenue Claude Guillemin, CEDEX 02, 45060 Orleans, France; (C.M.); (N.M.); (I.I.)
| | - Stéphanie Betelu
- BRGM, French Geological Survey, 3 Avenue Claude Guillemin, CEDEX 02, 45060 Orleans, France; (C.M.); (N.M.); (I.I.)
- Correspondence: (A.S.); (S.B.)
| |
Collapse
|
18
|
Gas-solid photo-catalytic reduction of CO2 to CO on calcined sulfonated cobalt phthalocyanine/ZnO/reduced graphene oxide under simulated sunlight. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Cardona JFZ, Sacanell J, Barral MA, Vildosola V, Viva FA. CO2 reduction on a nanostructured La0.5Ba0.5CoO3 perovskite: Electrochemical characterization and DFT calculations. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Mohammadi S, Esmailpour A, Doustkhah E, Assadi MHN. Stability Trends in Mono-Metallic 3d Layered Double Hydroxides. NANOMATERIALS 2022; 12:nano12081339. [PMID: 35458045 PMCID: PMC9029406 DOI: 10.3390/nano12081339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Layered double hydroxides (LDHs) constitute a unique group of 2D materials that can deliver exceptional catalytic, optical, and electronic performance. However, they usually suffer from low stability compared to their oxide counterparts. Using density functional calculations, we quantitatively demonstrate the crucial impact of the intercalants (i.e., water, lactate, and carbonate) on the stability of a series of common LDHs based on Mn, Fe, and Co. We found that intercalation with the singly charged lactate results in higher stability in all these LDH compounds, compared to neutral water and doubly charged carbonate. Furthermore, we show that the dispersion effect aids the stability of these LDH compounds. This investigation reveals that certain intercalants enhance LDH stability and alter the bandgap favourably.
Collapse
Affiliation(s)
- Saeedeh Mohammadi
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, Iran; (S.M.); (A.E.)
| | - Ayoub Esmailpour
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, Iran; (S.M.); (A.E.)
| | - Esmail Doustkhah
- Koç University Tüpraş Energy Center (KUTEM), Department of Chemistry, Koç University, Istanbul 34450, Turkey
- Correspondence: (E.D.); (M.H.N.A.)
| | - Mohammad Hussein Naseef Assadi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Correspondence: (E.D.); (M.H.N.A.)
| |
Collapse
|
21
|
Copper decorated indium oxide rods for photocatalytic CO2 conversion under simulated sun light. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Cored J, Mazarío J, Cerdá-Moreno C, Lustemberg PG, Ganduglia-Pirovano MV, Domine ME, Concepción P. Enhanced Methanol Production over Non-promoted Cu–MgO–Al 2O 3 Materials with Ex-solved 2 nm Cu Particles: Insights from an Operando Spectroscopic Study. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Cored
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Cristina Cerdá-Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Fisica Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
| | | | - Marcelo E. Domine
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
23
|
Alkali-Free Hydrothermally Reconstructed NiAl Layered Double Hydroxides for Catalytic Transesterification. Catalysts 2022. [DOI: 10.3390/catal12030286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NiAl layered double hydroxides (LDHs) are promising bifunctional catalysts comprising tunable redox and Lewis acidic sites. However, most studies of NiAl LDH employ alkali hydroxide carbonate precipitants which may contaminate the final LDH catalyst and leach into reaction media. Here, we report an alkali-free route to prepare NixAl LDHs with a composition range x = 1.7 to 4.1 using (NH4)2CO3 and NH4OH as precipitants. Activation of LDHs by calcination–rehydration protocols reveal NixAl LDHs can be reconstructed under mild hydrothermal treatment (110 °C for 12 h), with the degree of reconstruction increasing with Ni content. Catalyst activity for tributyrin transesterification with methanol was found to increase with Ni content and corresponding base site loadings; TOFs also increased, suggesting that base sites in the reconstructed LDH are more effective for transesterification. Hydrothermally reconstructed Ni4.1Al LDH was active for the transesterification of C4–C12 triglycerides with methanol and was stable towards leaching during transesterification.
Collapse
|
24
|
State-of-art modifications of heterogeneous catalysts for CO2 methanation - active sites, surface basicity and oxygen defects. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma. Catalysts 2022. [DOI: 10.3390/catal12010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CO2 hydrogenation is an effective way to convert CO2 to value-added chemicals (e.g., CH4 and CH3OH). As a thermal catalytic process, it suffers from dissatisfactory catalytic performances (low conversion/selectivity and poor stability) and high energy input. By utilizing the dielectric barrier discharge (DBD) technology, the catalyst and plasma could generate a synergy, activating the whole process in a mild condition, and enhancing the conversion efficiency of CO2 and selectivity of targeted product. In this review, a comprehensive summary of the applications of DBD plasma in catalytic CO2 hydrogenation is provided in detail. Moreover, the state-of-the-art design of the reactor and optimization of reaction parameters are discussed. Furthermore, several mechanisms based on simulations and experiments are provided. In the end, the existing challenges of this hybrid system and corresponding solutions are proposed.
Collapse
|
26
|
Lv Y, Yu Q, Mou X, Lin R, Ding Y. Revisiting the Structural Evolution of Hydrotalcite‐Derived Mixed Metal Oxides upon Alkali Metal Doping and Its Impact on Base Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yali Lv
- Hangzhou Institute of Advanced Studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 116023 PR China
| | - Qing Yu
- Hangzhou Institute of Advanced Studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 116023 PR China
| | - Xiaoling Mou
- Hangzhou Institute of Advanced Studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 116023 PR China
| | - Ronghe Lin
- Hangzhou Institute of Advanced Studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 116023 PR China
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies Zhejiang Normal University 1108 Gengwen Road Hangzhou 116023 PR China
- Dalian National Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 PR China
- The State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 PR China
| |
Collapse
|
27
|
Li Z, Deng Y, Wang Z, Hu J, Haw KG, Wang G, Kawi S. A superb water permeable membrane for potential applications in CO2 to liquid fuel process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts 2021. [DOI: 10.3390/catal11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.
Collapse
|
29
|
Li L, Guo X, Chen S, Chen X, Qin J, Lu Z. Fabrication of MgAl LDH@graphene oxide nanohybrids and their effect on the thermal stability and crystallization behavior of polypropylene. SOFT MATTER 2021; 17:10149-10159. [PMID: 34730169 DOI: 10.1039/d1sm01123e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The co-precipitation method is used to fabricate layered double hydroxide (LDH) nanohybrids with surface engineering of graphene oxide (GO) by radially grafting borate-LDH (BLDH) to BLDH@GO nanosheets, aiming at improving the surface characteristics and compatibility of LDH with the polymer matrix. The results prove the successful fabrication of BLDH@GO and LDH@GO nanosheets. The nanosheets are mixed into polypropylene (PP) by melt blending to study the structure and properties of the composites. The PP composites with BLDH@GO and BLDH have both exfoliation structures and aggregation structures, and the two nanosheets show enhanced interfacial interactions with the PP matrix compared with LDH and LDH@GO. The initial decomposition temperatures of the PP composites are lower than those of the neat PP, but the thermal degradation temperatures of the PP composites are higher. Compared with the other samples, BLDH@GO provides a higher nucleation density, reflected in a smaller spherulite size and a higher crystallization temperature confirmed by the differential scanning calorimetry (DSC) results. BLDH@GO shifts the crystallization temperature of PP to higher values (compared to the neat PP) due to the nucleation effect, which is in line with the increase in the nucleation density detected by polarized optical microscopy (POM).
Collapse
Affiliation(s)
- Lingtong Li
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xincheng Guo
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaopeng Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- Sichuan Jiahe Copoly Technology Co., Ltd., Chengdu 610015, China
| | - Jun Qin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550003, China.
| | - Zongcheng Lu
- Sichuan Jiahe Copoly Technology Co., Ltd., Chengdu 610015, China
| |
Collapse
|
30
|
Epoxidation of Olefins with Molecular Oxygen Over Layered Double Hydroxide Catalyst in the Presence of Benzaldehyde. Catal Letters 2021. [DOI: 10.1007/s10562-021-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wang K, Wang T, Islam QA, Wu Y. Layered double hydroxide photocatalysts for solar fuel production. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63861-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Amer A, Sayed GH, Ramadan RM, Rabie AM, Negm NA, Farag AA, Mohammed EA. Assessment of 3-amino-1H-1,2,4-triazole modified layered double hydroxide in effective remediation of heavy metal ions from aqueous environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Park KS, Goag TY, Kwon JH, Park YM, Yu JS, Jeong HE, Choung JW, Bae JW. Effects of spatially confined nickel nanoparticles in surface-pretreated hydrophobic SBA-15 for dry reforming of CH4 with CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Jang SW, Dutta S, Kumar A, Kim SM, You YW, Lee IS. Silica-Enveloped 2D-Sheet-to-Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102851. [PMID: 34263553 DOI: 10.1002/smll.202102851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Here, lamellar confinement strategy is introduced for "sheet-to-nanocrystals (NCs)" conversion within a 2D-SiO2 envelope, which constructs a catalytic nanocartridge holding a platoon of isolated and in-plane-aligned ultrasmall Ni-NCs, performing as a robust and coking-resistant catalytic system for dry reforming of methane. Overcoming the problem of unavoidable bulk crystal growth from multiple sheets-stack or sheet-on-open-support, silica bilayer-encasing tightly clamps the atomic-thin Ni(OH)2 -nanosheet during thermal conversion and further hinders the migratory fusion of the resultant Ni-NCs. Upon heating-cooling cycle, the flapping silica envelope clutches the Ni-NCs like "eggs in a carton," subsequently, ensuring their thermal stability. Owing to the unique 2D-enveloped rigid architecture, Ni-NCs can circumvent sintering and coke deposition while tolerating the high temperatures (>700 °C) for long operation (>100 h), affording high conversions to syngas.
Collapse
Affiliation(s)
- Sun Woo Jang
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Soumen Dutta
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Amit Kumar
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Soo Min Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Young-Woo You
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - In Su Lee
- Center for Nanospace-Confined Chemical Reactions (NCCRs) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
35
|
Fang X, Chen C, Jia H, Li Y, Liu J, Wang Y, Song Y, Du T, Liu L. Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
37
|
Zhang J, Xia Q, Hong X, Chen J, Liu D. Synthesis of layered double hydroxides with nitrate and its adsorption properties of phosphate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:100-110. [PMID: 33460410 DOI: 10.2166/wst.2020.567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, different ratios of layered double hydroxides (LDHs) were synthesized via co-precipitation method. The synthesized LDHs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption-desorption analysis, point of zero charges (pHpzc), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Phosphate adsorption performances were estimated by batch adsorption experiments; desorption hysteresis and adsorption mechanism were also investigated. The XRD, SEM and TEM results confirmed the multilayer structure of the synthesized LDHs. The pseudo-second-order kinetic model and the Freundlich model describe the adsorption behavior of LDHs best. The maximum adsorption capacity is 185.86 mg-KH2PO4/g for Mg2Al-NO3 LDH. When the dosage of LDHs was greater than 2 g/L, the phosphorus content in the solution decreased from 30 mg-P/L to 0.077 mg-P/L after adsorption by Mg2Al-NO3 LDH. All the results reveal that Mg2Al-NO3 LDH is a potential adsorbent for removing phosphate from aqueous solution.
Collapse
Affiliation(s)
- Jiangpo Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Qi Xia
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Xiaofeng Hong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jianjun Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu 610065, China
| | - Daijun Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail: ; Engineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu 610065, China
| |
Collapse
|
38
|
Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. REACTIONS 2020. [DOI: 10.3390/reactions1020013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dry reforming of methane (DRM) reaction has drawn much interest due to the reduction of greenhouse gases and production of syngas. Coking and sintering have hindered the large-scale operations of Ni-based catalysts in DRM reactions at high temperatures. Smart designs of Ni-based catalysts are comprehensively summarized in fourth aspects: surface regulation, oxygen defects, interfacial engineering, and structural optimization. In each part, details of the designs and anti-deactivation mechanisms are elucidated, followed by a summary of the main points and the recommended strategies to improve the catalytic performance, energy efficiency, and utilization rate.
Collapse
|
39
|
Świrk K, Grams J, Motak M, Da Costa P, Grzybek T. Understanding of tri-reforming of methane over Ni/Mg/Al hydrotalcite-derived catalyst for CO2 utilization from flue gases from natural gas-fired power plants. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020. [DOI: 10.3390/catal10111293] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The continuous rise in the atmospheric concentration of carbon dioxide gas (CO2) is of significant global concern. Several methodologies and technologies are proposed and applied by the industries to mitigate the emissions of CO2 into the atmosphere. This review article offers a large number of studies that aim to capture, convert, or reduce CO2 by using a superb porous class of materials (metal-organic frameworks, MOFs), aiming to tackle this worldwide issue. MOFs possess several remarkable features ranging from high surface area and porosity to functionality and morphology. As a result of these unique features, MOFs were selected as the main class of porous material in this review article. MOFs act as an ideal candidate for the CO2 capture process. The main approaches for capturing CO2 are pre-combustion capture, post-combustion capture, and oxy-fuel combustion capture. The applications of MOFs in the carbon capture processes were extensively overviewed. In addition, the applications of MOFs in the adsorption, membrane separation, catalytic conversion, and electrochemical reduction processes of CO2 were also studied in order to provide new practical and efficient techniques for CO2 mitigation.
Collapse
|