1
|
Bhaskaran A, Sharma D, Roy S, Singh SA. Technological solutions for NO x, SO x, and VOC abatement: recent breakthroughs and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91501-91533. [PMID: 37495811 DOI: 10.1007/s11356-023-28840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
NOx, SOx, and carbonaceous volatile organic compounds (VOCs) are extremely harmful to the environment, and their concentrations must be within the limits prescribed by the region-specific pollution control boards. Thus, NOx, SOx, and VOC abatement is essential to safeguard the environment. Considering the importance of NOx, SOx, and VOC abatement, the discussion on selective catalytic reduction, oxidation, redox methods, and adsorption using noble metal and non-noble metal-based catalytic approaches were elaborated. This article covers different thermal treatment techniques, category of materials as catalysts, and its structure-property insights along with the advanced oxidation processes and adsorption. The defect engineered catalysts with lattice oxygen vacancies, bi- and tri-metallic noble metal catalysts and non-noble metal catalysts, modified metal organic frameworks, mixed-metal oxide supports, and their mechanisms have been thoroughly reviewed. The main hurdles and potential achievements in developing novel simultaneous NOx, SOx, and VOC removal technologies are critically discussed to envisage the future directions. This review highlights the removal of NOx, SOx, and VOC through material selection, properties, and mechanisms to further improve the existing abatement methods in an efficient way.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Deepika Sharma
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Satyapaul A Singh
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India.
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
2
|
Jung YJ, Cha JS, Kim BS. Characteristics of deactivation and thermal regeneration of Nb-doped V 2O 5-WO 3/TiO 2 catalyst for NH 3-SCR reaction. ENVIRONMENTAL RESEARCH 2023; 227:115744. [PMID: 36963711 DOI: 10.1016/j.envres.2023.115744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
This study investigated the effect of Nb doping into V2O5-WO3/TiO2 (VWT) catalyst for removing NOxvia the SCR (selective catalytic reduction) by NH3. The experimental results exhibited that Nb can improve the reactivity of the VWT catalyst at low temperatures. The addition of Nb also enhanced the tolerance to SO2 and H2O. The de-NOx efficiency of the V2O5-WO3-Nb2O5/TiO2 (VWNbT) catalyst was increased up to 12% over that of the VWT catalyst at 240 °C when the catalyst was poisoned for 24 h. The prepared catalysts were characterized by FT-IR, XRD, XPS, and N2 physisorption, elemental analysis. The results showed that the ammonium bisulfate (ABS) was less formed in the VWNbT than in the VWT. Moreover, evolved gas analysis was performed to examine the thermal decomposition behavior of the poisoned catalyst, and confirmed that the ABS deposited on the catalyst was sufficiently decomposed between about 300 and 400 °C. In particular, to most effectively recover the characteristics and activity of the catalysts, thermal treatment at a temperature of 400 °C is suitable.
Collapse
Affiliation(s)
- Yoo-Jin Jung
- Material Technology Center, Korea Testing Laboratory, Seoul, 08389, Republic of Korea
| | - Jin-Sun Cha
- Material Technology Center, Korea Testing Laboratory, Seoul, 08389, Republic of Korea.
| | - Beom-Sik Kim
- Hydrogen Research Center, Research Institute of Industrial Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
3
|
Wilson CE, Gibson AE, Cuillier PM, Li CH, Crosby PHN, Trigg EB, Najmr S, Murray CB, Jinschek JR, Doan-Nguyen V. Local structure elucidation of tungsten-substituted vanadium dioxide (V[Formula: see text]W[Formula: see text]O[Formula: see text]). Sci Rep 2022; 12:14767. [PMID: 36042264 PMCID: PMC9428210 DOI: 10.1038/s41598-022-18575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ([Formula: see text]) is less than the average [Formula: see text] supporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO[Formula: see text] V[Formula: see text]O[Formula: see text] V[Formula: see text]O[Formula: see text].
Collapse
Affiliation(s)
- Catrina E. Wilson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Amanda E. Gibson
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Paul M. Cuillier
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Cheng-Han Li
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| | - Patrice H. N. Crosby
- Chemistry, Ohio State University, Columbus, OH 43212 USA
- Present Address: Human Centered Design, Cornell University, Ithaca, NY 14853 USA
| | - Edward B. Trigg
- Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 USA
- Present Address: Battelle Memorial Institute, Columbus, OH 43201 USA
| | - Stan Najmr
- Chemistry, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Christopher B. Murray
- Present Address: Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19143 USA
| | - Joerg R. Jinschek
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
- Present Address: DTU Nanolab, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Vicky Doan-Nguyen
- Materials Science and Engineering, Ohio State University, Columbus, OH 43212 USA
| |
Collapse
|
4
|
Hu P, Zhang Y. Mechanism of vanadium selective separation from iron in shale under an environmentally friendly oxalate ligand system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Effect of Catalyst Crystallinity on V-Based Selective Catalytic Reduction with Ammonia. NANOMATERIALS 2021; 11:nano11061452. [PMID: 34070897 PMCID: PMC8230001 DOI: 10.3390/nano11061452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022]
Abstract
In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts’ crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C–450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.
Collapse
|
6
|
Inomata Y, Kubota H, Hata S, Kiyonaga E, Morita K, Yoshida K, Sakaguchi N, Toyao T, Shimizu KI, Ishikawa S, Ueda W, Haruta M, Murayama T. Bulk tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat Commun 2021; 12:557. [PMID: 33495463 PMCID: PMC7835234 DOI: 10.1038/s41467-020-20867-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
NH3-SCR (selective catalytic reduction) is important process for removal of NOx. However, water vapor included in exhaust gases critically inhibits the reaction in a low temperature range. Here, we report bulk W-substituted vanadium oxide catalysts for NH3-SCR at a low temperature (100-150 °C) and in the presence of water (~20 vol%). The 3.5 mol% W-substituted vanadium oxide shows >99% (dry) and ~93% (wet, 5-20 vol% water) NO conversion at 150 °C (250 ppm NO, 250 ppm NH3, 4% O2, SV = 40000 mL h-1 gcat-1). Lewis acid sites of W-substituted vanadium oxide are converted to Brønsted acid sites under a wet condition while the distribution of Brønsted and Lewis acid sites does not change without tungsten. NH4+ species adsorbed on Brønsted acid sites react with NO accompanied by the reduction of V5+ sites at 150 °C. The high redox ability and reactivity of Brønsted acid sites are observed for bulk W-substituted vanadium oxide at a low temperature in the presence of water, and thus the catalytic cycle is less affected by water vapor.
Collapse
Affiliation(s)
- Yusuke Inomata
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University Hachioji, Tokyo, 192-0397, Japan
| | - Hiroe Kubota
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Eiji Kiyonaga
- Energia Economic and Technical Research Institute, The Chugoku Electric Power Company, Incorporated, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Keiichiro Morita
- Energia Economic and Technical Research Institute, The Chugoku Electric Power Company, Incorporated, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Yoshida
- Energia Economic and Technical Research Institute, The Chugoku Electric Power Company, Incorporated, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, 221-8686, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, 221-8686, Japan
| | - Masatake Haruta
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University Hachioji, Tokyo, 192-0397, Japan
| | - Toru Murayama
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University Hachioji, Tokyo, 192-0397, Japan.
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC) School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|