1
|
Zhou Y, Zhou L, Li Q, Zhu X, Yu Z, Ke H, Chen Q, Ren B. Transcriptome analysis and identification of genes related to environmental adaptation of Grylloprimevala jilina Zhou & Ren 2023. Ecol Evol 2023; 13:e10717. [PMID: 38020696 PMCID: PMC10659822 DOI: 10.1002/ece3.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Grylloprimevala jilina is a true cave insect living in the dark areas of caves. It has the characteristics of sparse skin pigmentation, degeneration of the compound eyes and monocular eyes, and obvious preference for high-humidity and low-temperature environments. Given the highly specialized, rare, and limited distribution, G. jilina is considered an endangered species and also a first-level national protected insect in China. Cave creatures often undergo dramatic morphological changes in their sensory systems to adapt to the cave environment. Most previous studies mainly focused on morphological adaptive changes in cave insects, and only a few studied the changes at the gene level. In this study, we performed transcriptome analysis of G. jilina and constructed phylogenetic trees of genes that are related to environmental adaptation, including chemosensory, visual-related, reproduction-related, temperature adaptation-related, and winged morph differentiation-related genes. Besides, the expression levels of environmental adaption-related genes in different tissues, including antennae, heads, thoraxes, abdomens, legs, and tails, were analyzed. The results showed the loss of chemosensory genes and vision-related genes, the conservation of reproduction-related genes and temperature adaptation-related genes, and the conservation of wing-related genes despite the loss of wings, and the results were consistent with other cave insects. The identification and expression study of genes possibly related to the environmental adaptability in G. jilina provided basic data for the protection of this endangered species and increased knowledge about insect evolution in general.
Collapse
Affiliation(s)
- Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Lin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
- Istitude of Plant Protection Jilim Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast ChinaMinistry of Agriculture and Rural AreasGongzhlingChina
| | - Qiuyao Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Xiaoyan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Zhongbo Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Haoqin Ke
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunChina
- Key Laboratory of Vegetation Ecology, MOENortheast Normal UniversityChangchunChina
| |
Collapse
|
2
|
Gebremedhin MB, Xu Z, Kuang C, Shumuye NA, Cao J, Zhou Y, Zhang H, Zhou J. Current Knowledge on Chemosensory-Related Candidate Molecules Potentially Involved in Tick Olfaction via Haller's Organ. INSECTS 2023; 14:294. [PMID: 36975979 PMCID: PMC10053194 DOI: 10.3390/insects14030294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Ticks are obligatory hematophagous ectoparasites and vectors of many animal and human pathogens. Chemosensation plays a significant role in tick communication with their environment, including seeking out blood meal hosts. Studies on the structure and function of Haller's organ and its components have improved our understanding regarding tick olfaction and its chemical ecology. Compared with the knowledge on insect olfaction, less is known about the molecular basis of olfaction in ticks. This review focused on the chemosensory-related candidate molecules likely involved in tick olfaction. Members of the ionotropic receptor family and a new class of odorant-binding proteins are now known to be involved in tick olfaction, which appear to differ from that of insects. These candidate molecules are more closely related to those of mites and spiders than to other arthropods. The amino acid sequences of candidate niemann-pick type C2 and microplusin-like proteins in ticks exhibit features indicating their potential role as binding proteins. In the future, more comprehensive pertinent research considering the existing shortcomings will be required to fully understand the molecular basis of tick olfactory chemoreception. This information may contribute to the development of new molecular-based control mechanisms to reduce tick populations and related disease transmission.
Collapse
Affiliation(s)
- Mebrahtu Berhe Gebremedhin
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Nigus Abebe Shumuye
- State Key Laboratory of Veterinary Etiological Biology, National Animal Echinococcosis Para-Reference Laboratory, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
3
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Genome-wide identification and expression pattern analysis of novel chemosensory genes in the German cockroach Blattella germanica. Genomics 2022; 114:110310. [DOI: 10.1016/j.ygeno.2022.110310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
|
5
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|
6
|
Li H, Li W, Miao C, Wang G, Zhao M, Yuan G, Guo X. Identification of the differences in olfactory system between male and female oriental tobacco budworm Helicoverpa assulta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21829. [PMID: 34191347 DOI: 10.1002/arch.21829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using Pacbio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins, 4 pheromone-binding proteins (PBPs), 68 odorant receptors and 2 sensory neuron membrane proteins (SNMPs) genes, that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of General odorant-binding protein 1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. These results improve our understanding of mate search and host differentiation in H. assulta.
Collapse
Affiliation(s)
- Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences/Institute of Palnt Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weizheng Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Changjian Miao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Cheng W, Zhang Y, Yu J, Liu W, Zhu-Salzman K. Functional Analysis of Odorant-Binding Proteins 12 and 17 from Wheat Blossom Midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae). INSECTS 2020; 11:insects11120891. [PMID: 33348639 PMCID: PMC7767053 DOI: 10.3390/insects11120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
Simple Summary Sitodiplosis mosellana is one of the most destructive pests of wheat. Adults rely highly on wheat spike volatiles to search and locate oviposition sites. Insect odorant-binding proteins (OBPs) are important in binding and transporting host plant volatiles to the olfactory receptors. Therefore, OBP-based behavioral interference is believed to be a novel and effective pest management strategy. The objectives of this study were to clone two S. mosellana female antenna-enriched OBP genes (SmosOBP12 and SmosOBP17), determine the functions of the encoded SmosOBP proteins in binding wheat volatiles, and investigate behavioral responses of female S. mosellana to odorant molecules. Results indicated that SmosOBP12 had a broader ligand-binding spectrum than SmosOBP17 to wheat volatiles. Female S. mosellana showed intensive response to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, ethyl heptanoate, α-farnesene, and ocimene. Notably, all these compounds except α-farnesene exhibited strong affinity to SmosOBP12. In conclusion, SmosOBP12 may play more crucial roles than SmosOBP17 in perception and transportation of biologically active host volatiles. This information has enhanced our molecular understanding of the S. mosellana olfaction, which could also serve as an important reference for developing attractants or repellents to control this pest. Abstract The wheat blossom midge Sitodiplosis mosellana, one of the most disastrous wheat pests, depends highly on olfactory cues to track suitable plants. To better understand the olfactory recognition mechanisms involved in host selection, in the present study we cloned two S. mosellana adult antenna-specific odorant binding protein (OBP) genes, SmosOBP12 and SmosOBP17, and evaluated bacterially expressed recombinant proteins for their selectivity and sensitivity for host wheat volatiles using the fluorescence-based ligand binding assay. The results showed that both SmosOBPs effectively bound alcohol, ester, ketone, and terpenoid compounds. Particularly, SmosOBP12 had significantly higher affinities (Ki < 10.5 μM) than SmosOBP17 (Ki2 > 0.1 μM) to 3-hexanol, 1-octen-3-ol, D-panthenol, 3-carene, (Z)-3-hexenylacetate, hexyl acetate, methyl salicylate, heptyl acetate, and ethyl heptanoate. Consistently, S. mosellana females were attracted to all these chemicals in a behavioral assay using Y-tube olfactometer. SmosOBP12 also bound aldehyde, but neither bound alkanes. Notably, SmosOBP12 exhibited strong affinity to ocimene (Ki = 8.2 μM) that repelled S. mosellana. SmosOBP17, however, was insensitive to this compound. Taken together, our results indicate that SmosOBP12 may play a greater role than SmosOBP17 in perceiving these biologically active plant volatiles.
Collapse
Affiliation(s)
- Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
- Correspondence: (W.C.); (K.Z.-S.)
| | - Yudong Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Jinlin Yu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Wei Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Y.Z.); (J.Y.); (W.L.)
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (W.C.); (K.Z.-S.)
| |
Collapse
|
8
|
Cheng WN, Zhang YD, Liu W, Li GW, Zhu-Salzman K. Molecular and functional characterization of three odorant-binding proteins from the wheat blossom midge, Sitodiplosis mosellana. INSECT SCIENCE 2020; 27:721-734. [PMID: 31017726 DOI: 10.1111/1744-7917.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Sitodiplosis mosellana, a periodic but devastating wheat pest, relies on wheat spike volatiles as a cue in selecting hosts for oviposition. Insect odorant-binding proteins (OBPs) are thought to play essential roles in filtering, binding and transporting hydrophobic odorant molecules to specific receptors. To date, the molecular mechanisms underlying S. mosellana olfaction are poorly understood. Here, three S. mosellana antenna-specific OBP genes, SmosOBP11, 16 and 21, were cloned and bacterially expressed. Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were investigated using fluorescence competitive binding assays. Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily. Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol, ester and ketone compounds, and SmosOBP11 and 16 also selectively bound terpenoid compounds. In particular, the three SmosOBPs had high binding affinities (Ki < 20 μmol/L) to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram (EAG) response from female antennae. In addition, SmosOBP11 displayed significantly higher binding (Ki < 8 μmol/L) than SmosOBP16 and 21 to 1-octen-3-ol, D-panthenol, α-pinene and heptyl acetate which elicited significant EAG response, suggesting that SmosOBP11 plays a major role in recognition and transportation of these volatiles. These findings have provided important insight into the molecular mechanism by which S. mosellana specifically recognizes plant volatiles for host selection, and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.
Collapse
Affiliation(s)
- Wei-Ning Cheng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Dong Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, Shaanxi, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Pan L, Guo M, Jin X, Sun Z, Jiang H, Han J, Wang Y, Yan C, Li M. Full-Length Transcriptome Survey and Expression Analysis of Parasitoid Wasp Chouioia cunea upon Exposure to 1-Dodecene. Sci Rep 2019; 9:18167. [PMID: 31796851 PMCID: PMC6890788 DOI: 10.1038/s41598-019-54710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Chouioia cunea (Yang) is an endoparasitic wasp which parasitizes pupae and thus plays an important role in the biological control of the fall webworm (Hyphantria cunea Drury), an important quarantine pest in the entire world and a major invasive pest in China. For the purposes of investigating which proteins are involved in the response of C. cunea to 1-Docecene, one of the chemical compounds of pupae of H. cunea with a significant attracting action to mated female C. cunea, 11.5 Gb transcriptome data was sequenced on the PacBio RS II platform from 1-day old C. cunea adults to generate a reference assembly. Afterwards, 46.88 Gb of clean RNA-Seq data were obtained to assess the transcriptional response of these insects before and after the stimulation with 1-Docecene. After removing redundancy using CD-HIT, a sequence structure analysis predicted 29,105 complete coding sequence (CDS) regions, 51,458 single-sequence repeats (SSRs), and 2,375 long non-coding RNAs. Based on the early transcriptome sequencing in our laboratory, we revealed some new sequences corresponding to chemosensory genes such as odorant binding proteins (OBPs), odorant receptor (OR), gustatory receptors(GRs). Results of quantitative real-time PCR experiments revealed that CcOBP7, CcOBP18, CcCSP4, CcOR2, and CcGR18 were up-regulated after 1-Dodecene stimulation. In addition, the expression of 31 genes, including 1 gene related to phospholipid biosynthesis and 2 genes related to transmembrane transport were up-regulated after 1-Dodecene stimulation; meanwhile, the expression of 22 genes, including 5 genes related to protein phosphorylation and protein serine/threonine kinase activity were significantly down-regulated after 1-Dodecene stimulation. These results suggest that the attraction of adult C. cunea to 1-dodecane is associated with the transmembrane signal transduction and dephosphorylation of some proteins. Our findings will provide useful targets for further studies on the molecular mechanism of host recognition in C. cunea.
Collapse
Affiliation(s)
- Lina Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Meiqi Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xin Jin
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Zeyang Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Hao Jiang
- South China University of Technology, 381 Tianhe Road, Guangzhou, 510641, China
| | - Jiayi Han
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Yonghui Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Min Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
10
|
Tang B, Tai S, Dai W, Zhang C. Expression and Functional Analysis of Two Odorant-Binding Proteins from Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3565-3574. [PMID: 30866622 DOI: 10.1021/acs.jafc.9b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two OBP genes, BodoOBP1 and BodoOBP2, were cloned from Bradysia odoriphaga, a major agricultural pest of Chinese chives. The amino acid sequence alignment of both BodoOBPs showed high similarity. Fluorescence competitive binding assays revealed that both BodoOBPs have a moderate binding affinity to dipropyl trisulfide. Tissue expression profiles indicated that both BodoOBPs are antennae-specific and more abundant in the male antennae than in the female antennae. Developmental expression profile analysis indicated that expression levels of both BodoOBPs were higher in the male adult stage than in the other developmental stages. Both BodoOBPs also showed differential expression in pre- and postmating adults. RNAi assays indicated that ability of dsOBPs-treated males to detect females was significantly reduced compared to controls. Attraction of plant volatile dipropyl trisulfide to dsOBPs-treated adults was also significantly lower than in the control. Our findings indicate that both BodoOBPs are involved in host-seeking behavior and in detecting sex pheromones.
Collapse
Affiliation(s)
- Bowen Tang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Shulei Tai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| |
Collapse
|
11
|
Khuhro SA, Yan Q, Liao H, Zhu GH, Sun JB, Dong SL. Expression Profile and Functional Characterization Suggesting the Involvement of Three Chemosensory Proteins in Perception of Host Plant Volatiles in Chilo suppressalis (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5107845. [PMID: 30260453 PMCID: PMC6159316 DOI: 10.1093/jisesa/iey088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 05/16/2023]
Abstract
The high sensitivity of the olfactory system is essential for feeding and oviposition in moth insects, and some chemosensory proteins (CSPs) are thought to play roles in this system by binding and carrying hydrophobic odorants across the aqueous sensillar lymph. In this study, to identify the olfactory CSPs from a repertoire of 21 CSP members in the notorious rice pest Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), tissue expression patterns were firstly examined by quantitative real-time polymerase chain reaction (qPCR). It showed that CSP2 was antennae specific and seven more CSPs (CSP1, 3, 4, 6, 15, 16, and 17) were antennae biased in expression, suggesting their olfactory roles; while other CSPs were multiple-tissue expressed and non-antennae biased, suggesting other functions for these genes. To further determine the ligand binding specificity, three putative olfactory genes (CSP1-3) were expressed in Escherichia coli cells, and binding affinity of these three recombinant CSP proteins were measured for 35 plant volatiles by the ligand binding assays. CSP1 and CSP2 exhibited high binding affinities (Ki ≤ 10.00 µM) for four (2-tridecanone, benzaldehyde, laurinaldehyde and 2-pentadecanone) and two (2-heptanol and (+)-cedrol) host plant volatiles, respectively; the three CSPs also showed moderate binding affinity (Ki = 10.01-20.00 µM) for 16 plant volatiles. Our study suggests that the three CSPs play essential roles in the perception of host plant volatiles, providing bases for the elucidation of olfactory mechanisms in this important pyralid pest.
Collapse
Affiliation(s)
- Sajjad Ali Khuhro
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Qi Yan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Hui Liao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Guan-Heng Zhu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Jia-Bin Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
| | - Shuang-Lin Dong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University/ Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, China
- Corresponding author, e-mail:
| |
Collapse
|
12
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
13
|
Robertson HM, Baits RL, Walden KK, Wada‐Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:265-278. [PMID: 29566459 PMCID: PMC6175461 DOI: 10.1002/jez.b.22797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 01/26/2023]
Abstract
The acquisition of genome sequences from a wide range of insects and other arthropods has revealed a broad positive correlation between the complexity of their chemical ecology and the size of their chemosensory gene repertoire. The German cockroach Blattella germanica is an extreme omnivore and has the largest chemosensory gene repertoire known for an arthropod, exceeding even the highly polyphagous spider mite Tetranychus urticae. While the Odorant Receptor family is not particularly large, with 123 genes potentially encoding 134 receptors (105 intact), the Gustatory Receptor family is greatly expanded to 431 genes potentially encoding 545 receptors (483 intact), the largest known for insects and second only to the spider mite. The Ionotropic Receptor family of olfactory and gustatory receptors is vastly expanded to at least 897 genes (604 intact), the largest size known in arthropods, far surpassing the 150 known from the dampwood termite Zootermopsis nevadensis. Commensurately, the Odorant Binding Protein family is expanded to the largest known for insects at 109 genes (all intact). Comparison with the far more specialized, but phylogenetically related termite, within the Dictyoptera, reveals considerable gene losses from the termite, and massive species-specific gene expansions in the cockroach. The cockroach has lost function of 11%-41% of these three chemoreceptor gene families to pseudogenization, and most of these are young events, implying rapid turnover of genes along with these major expansions, presumably in response to changes in its chemical ecology.
Collapse
Affiliation(s)
- Hugh M. Robertson
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rachel L. Baits
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Kimberly K.O. Walden
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Ayako Wada‐Katsumata
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Coby Schal
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
14
|
He P, Li ZQ, Zhang YF, Chen L, Wang J, Xu L, Zhang YN, He M. Identification of odorant-binding and chemosensory protein genes and the ligand affinity of two of the encoded proteins suggest a complex olfactory perception system in Periplaneta americana. INSECT MOLECULAR BIOLOGY 2017; 26:687-701. [PMID: 28719023 DOI: 10.1111/imb.12328] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The American cockroach (Periplaneta americana) is an urban pest with a precise chemosensory system that helps it achieve complex physiological behaviours, including locating food and mating. However, its chemosensory mechanisms have not been well studied. Here, we identified 71 putative odorant carrier protein genes in P. americana, including 57 new odorant-binding proteins (OBPs) and 11 chemosensory proteins (CSPs). To identify their physiological functions, we investigated their tissue expression patterns in antennae, mouthparts, legs, and the remainder of the body of both sexes, and determined that most of these genes were expressed in chemosensory organs. A phylogenetic tree showed that the putative pheromone-binding proteins of P. americana were in different clades from those of moths. Two genes, PameOBP24 and PameCSP7, were expressed equally in antennae of both sexes and highly expressed amongst the OBPs and CSPs. These genes were expressed in Escherichia coli and the resultant proteins were purified. The binding affinities of 74 common odorant compounds were tested with recombinant PameOBP24 and PameCSP7. Both proteins bound a variety of ligands. Our findings provide a foundation for future research into the chemosensory mechanisms of P. americana and help in identifying potential target genes for managing this pest.
Collapse
Affiliation(s)
- P He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - Z-Q Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Y-F Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, China
| | - L Chen
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Guian, Guizhou, China
| | - J Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| | - L Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Y-N Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - M He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, China
| |
Collapse
|
15
|
Jiang X, Krieger J, Breer H, Pregitzer P. Distinct Subfamilies of Odorant Binding Proteins in Locust (Orthoptera, Acrididae): Molecular Evolution, Structural Variation, and Sensilla-Specific Expression. Front Physiol 2017; 8:734. [PMID: 29018357 PMCID: PMC5623057 DOI: 10.3389/fphys.2017.00734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Odorant binding proteins (OBPs) play an important role in insect olfaction, facilitating transportation of odorant molecules in the sensillum lymph. While most of the researches are concentrated on Lepidopteran and Dipteran species, our knowledge about Orthopteran species is still very limited. In this study, we have investigated OBPs of the desert locust Schistocerca gregaria, a representative Orthopteran species. We have identified 14 transcripts from a S. gregaria antennal transcriptome encoding SgreOBPs, and recapitulated the phylogenetic relationship of SgreOBPs together with OBPs from three other locust species. Two conserved subfamilies of classic OBPs have been identified, named I-A and II-A, exhibiting both common and subfamily-specific amino acid motifs. Distinct evolutionary features were observed for subfamily I-A and II-A OBPs. Surface topology and interior cavity were elucidated for OBP members from the two subfamilies. Antennal topographic expression revealed distinct sensilla- and cellular- specific expression patterns for SgreOBPs from subfamily I-A and II-A. These findings give first insight into the repertoire of locust OBPs with respect to their molecular and evolutionary features as well as their expression in the antenna, which may serve as an initial step to unravel specific roles of distinct OBP subfamilies in locust olfaction.
Collapse
Affiliation(s)
- Xingcong Jiang
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Pablo Pregitzer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Identification and tissue expression profile of genes from three chemoreceptor families in an urban pest, Periplaneta americana. Sci Rep 2016; 6:27495. [PMID: 27279336 PMCID: PMC4899716 DOI: 10.1038/srep27495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Periplaneta americana is a notorious urban pest prevalent in human habitats; very little is known about its chemosensory mechanism. Employing the advanced next-generation sequencing technique, in the present study, we conducted transcriptome sequencing and analysis of the antennae of the adult males and females as well as their mouthparts using an Illumina platform. This resulted in the discovery of a huge number of the members of all major known chemosensory receptor families in P. americana, including 96 odorant receptors (ORs), 53 ionotropic receptors (IRs), and 33 gustatory receptors (GRs). Tissue expression profiles showed most of them mainly expressed in antennae and phylogenetic analysis demonstrated the expansion in the clade distinguishing them from other functionally well-known Lepidoptera species. A high percentage of chemosensory receptor genes (ORs in particular) showing female antenna bias in mRNA expression was observed. Our results provide a basis for further investigations on how P. americana coordinates its chemosensory receptor genes in chemical communication with environments, and for development of novel pest management approaches.
Collapse
|