1
|
Cheng X, Jiang W, Wang Q, Liu K, Dai W, Liu Y, Shao C, Li Q. Unveiling Gene Expression Dynamics during Early Embryogenesis in Cynoglossus semilaevis: A Transcriptomic Perspective. Life (Basel) 2024; 14:505. [PMID: 38672775 PMCID: PMC11050975 DOI: 10.3390/life14040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Commencing with sperm-egg fusion, the early stages of metazoan development include the cleavage and formation of blastula and gastrula. These early embryonic events play a crucial role in ontogeny and are accompanied by a dramatic remodeling of the gene network, particularly encompassing the maternal-to-zygotic transition. Nonetheless, the gene expression dynamics governing early embryogenesis remain unclear in most metazoan lineages. We conducted transcriptomic profiling on two types of gametes (oocytes and sperms) and early embryos (ranging from the four-cell to the gastrula stage) of an economically valuable flatfish-the Chinese tongue sole Cynoglossus semilaevis (Pleuronectiformes: Cynoglossidae). Comparative transcriptome analysis revealed that large-scale zygotic genome activation (ZGA) occurs in the blastula stage, aligning with previous findings in zebrafish. Through the comparison of the most abundant transcripts identified in each sample and the functional analysis of co-expression modules, we unveiled distinct functional enrichments across different gametes/developmental stages: actin- and immune-related functions in sperms; mitosis, transcription inhibition, and mitochondrial function in oocytes and in pre-ZGA embryos (four- to 1000-cell stage); and organ development in post-ZGA embryos (blastula and gastrula). These results provide insights into the intricate transcriptional regulation of early embryonic development in Cynoglossidae fish and expand our knowledge of developmental constraints in vertebrates.
Collapse
Affiliation(s)
- Xinyi Cheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
- BGI Research, Wuhan 430074, China;
| | - Wei Jiang
- BGI Research, Shenzhen 518083, China;
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wei Dai
- BGI Research, Wuhan 430074, China;
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Q.W.); (K.L.); (Y.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiye Li
- BGI Research, Wuhan 430074, China;
- BGI Research, Shenzhen 518083, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li L, Li X, Chen Y, Yang Y, Wang N, Xu W. Identification and Functional Analysis of Cynoglossus semilaevis Z-Linked E3 Ubiquitin Ligase rnf34. Animals (Basel) 2024; 14:311. [PMID: 38275772 PMCID: PMC10812492 DOI: 10.3390/ani14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The high proportion of males in C. semilaevis hinders their industrial development. The genetic ZW individual can become a pseudomale by sex reversal. And the pseudomale can produce Z-sperm (with epigenetic information to cause sex reversal) while W-sperm is absent, which leads to an even higher male proportion in offspring. Recently, with the development of transcriptomic technologies, research on spermatogenesis in C. semilaevis has been focused on the ubiquitination pathway. In this study, we analyzed the function of the ubiquitin ligase rnf34 gene on the Z chromosome. A qPCR experiment showed that its expression level in the gonad was the highest among different tissues. In the ovary, the expression gradually increased with development from 40 days post-hatching (dph) to 1.5 years post-hatching (yph). In the testis, rnf34 showed increased expression from 40 dph to 6 months post-hatching (mpf) and stabilized up until 1.5 ypf. In situ hybridization showed that the mRNA of rnf34 was mainly distributed in the germ cells of the testis and the ovary. In vivo siRNA-mediated knockdown of the rnf34 gene in male fish affected the expression of a series of genes related to sex differentiation and spermatogenesis. These results provide genetic data on the molecular mechanisms of gonadal development and spermatogenesis in C. semilaevis.
Collapse
Affiliation(s)
- Lu Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Xihong Li
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Yadong Chen
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Yingming Yang
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Na Wang
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| | - Wenteng Xu
- Function Laboratory for Marine Science and Food Production Process, Laoshan Laboratory, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China
| |
Collapse
|
3
|
Gao J, Wang Y, Liu J, Chen F, Guo Y, Ke H, Wang X, Luo M, Fu S. Genome-wide association study reveals genomic loci of sex differentiation and gonadal development in Plectropomus leopardus. Front Genet 2023; 14:1229242. [PMID: 37645057 PMCID: PMC10461086 DOI: 10.3389/fgene.2023.1229242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Plectropomus leopardus, a commercially significant marine fish, is primarily found in the Western Pacific regions and along the coast of Southeast Asia. A thorough analysis of the molecular mechanisms involved in sex differentiation is crucial for gaining a comprehensive understanding of gonadal development and improving sex control breeding. However, the relevant fundamental studies of P. leopardus are relatively lacking. Methods: In this study, a genome-wide association study (GWAS) was conducted to investigate the genetic basis mechanism of sex differentiation and gonadal developmental traits in P. leopardus utilizing about 6,850,000 high-quality single-nucleotide polymorphisms (SNPs) derived from 168 individuals (including 126 females and 42 males) by the genome-wide efficient mixed-model association (GEMMA) algorithm. Results: The results of these single-trait GWASs showed that 46 SNP loci (-log10 p > 7) significantly associated with sex differentiation, and gonadal development traits were distributed in multiple different chromosomes, which suggested the analyzed traits were all complex traits under multi-locus control. A total of 1,838 potential candidate genes were obtained by considering a less-stringent threshold (-log10 p > 6) and ±100 kb regions surrounding the significant genomic loci. Moreover, 31 candidate genes were identified through a comprehensive analysis of significant GWAS peaks, gene ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, including taf7, ddx6, apoeb, sgk1, a2m, usf1, hsd3b7, dll4, xbp1, tet3, esr1, and gli3. These trait-associated genes have been shown to be involved in germline development, male sex differentiation, gonad morphogenesis, hormone receptor binding, oocyte development, male gonad development, steroidogenesis, estrogen-synthetic pathway, etc. Discussion: In the present study, multiple genomic loci of P. leopardus associated with sex differentiation and gonadal development traits were identified for the first time by using GWAS, providing a valuable resource for further research on the molecular genetic mechanism and sex control in P. leopardus. Our results also can contribute to understanding the genetic basis of the sex differentiation mechanism and gonadal development process in grouper fish.
Collapse
Affiliation(s)
- Jin Gao
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Yongbo Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Jinye Liu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Provincial Engineering Research Center for Tropical Sea-Farming, Haikou, China
| | - Fuxiao Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
| | - Yilan Guo
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Hongji Ke
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xulei Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Ming Luo
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Shuyuan Fu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
- Hainan Tropical Ocean University Yazhou Bay Innovation Institute, Sanya, China
- Hainan Provincial Engineering Research Center for Tropical Sea-Farming, Haikou, China
| |
Collapse
|
4
|
Potential Involvement of ewsr1-w Gene in Ovarian Development of Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2022; 12:ani12192503. [PMID: 36230245 PMCID: PMC9559465 DOI: 10.3390/ani12192503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Sexual dimorphism is a phenomenon commonly existing in animals. Chinese tongue sole Cynoglossus semilaevis is an economical marine fish with obvious female-biased size dimorphism. So, it is important to explore the molecular mechanism beyond gonadal development for sex control in aquaculture industry. RNA-binding protein Ewing Sarcoma protein-like (ewsr1) gene is important for mouse gonadal development and reproduction, however there are limited studies on this gene in teleost. In this study, two ewsr1 genes were cloned and characterized from C. semilaevis. The ewsr1-w gene, located in W chromosomes, showed female-biased expression during C. semilaevis gonadal development. In addition, knock-down effect and transcriptional regulation of Cs-ewsr1-w further suggested its essential role in ovarian development. This study broadened our understanding on ewsr1 function in teleost, and provided genetic resources for the further development of sex control breeding techniques in C. semilaevis aquaculture. Abstract Ewsr1 encodes a protein that acts as a multifunctional molecule in a variety of cellular processes. The full-length of Cs-ewsr1-w and Cs-ewsr1-z were cloned in Chinese tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of Cs-ewsr1-w was 1,767 bp that encoded 589 amino acids, while Cs-ewsr1-z was 1,794 bp that encoded 598 amino acids. Real-time PCR assays showed that Cs-ewsr1-w exhibited significant female-biased expression and could be hardly detected in male. It has the most abundant expression in ovaries among eight healthy tissues. Its expression in ovary increased gradually from 90 d to 3 y with C. semilaevis ovarian development and reached the peak at 3 y. After Cs-ewsr1-w knockdown with siRNA interference, several genes related to gonadal development including foxl2, sox9b and pou5f1 were down-regulated in ovarian cell line, suggesting the possible participation of Cs-ewsr1-w in C. semilaevis ovarian development. The dual-luciferase reporter assay revealed that the -733/-154 bp Cs-ewsr1-w promoter fragment exhibited strong transcription activity human embryonic kidney (HEK) 293T cell line. The mutation of a MAF BZIP Transcription Factor K (Mafk) binding site located in this fragment suggested that transcription factor Mafk might play an important role in Cs-ewsr1-w basal transcription. Our results will provide clues on the gene expression level, transcriptional regulation and knock-down effect of ewsr1 gene during ovarian development in teleost.
Collapse
|
5
|
Lei L, Chen C, Zhu J, Wang Y, Liu X, Liu H, Geng L, Su J, Li W, Zhu X. Transcriptome analysis reveals key genes and pathways related to sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100986. [PMID: 35447559 DOI: 10.1016/j.cbd.2022.100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Most vertebrates exhibit sexual dimorphisms in size, colour, behaviour, physiology and many others. The Chinese soft-shelled turtle (Pelodiscus sinensis) male individuals reach a larger size than females which produce significant economic implications in aquaculture. However, the mechanisms of sex determination and plastic patterns of sex differentiation in P. sinensis remain unclear. Here, comparative transcriptome analysis on male and female embryonic gonads prior to gonad formation and stages mediated gonadal differentiation of P. sinensis were performed to characterize the potential sex-related genes and their molecular pathways in P. sinensis. A total of 6369 differentially expressed genes (DEGs) were identified from day 9 and day 16 and assigned to 626 GO pathways and 161 KEGG signalling pathways, including ovarian steroidogenesis pathway, steroid hormone biosynthesis pathways, and the GnRH signalling pathway (P < 0.05). Moreover, protein interaction network analyses revealed that Akr1c3, Sult2b1, Sts, Cyp3a, Cyp1b1, Sox30 and Lhx9 might be key candidate genes for sex differentiation in P. sinensis. These data provide a genomic rationale for the sex differentiation of P. sinensis and enrich the candidate gene pool for sex differentiation.
Collapse
Affiliation(s)
- Luo Lei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Lulu Geng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China
| | - Junyu Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| | - Xinping Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| |
Collapse
|
6
|
Sun Y, Zhang M, Cheng P, Gong Z, Li X, Wang N, Wei M, Xu X, Xu W. pitpβ_w Encoding Phosphatidylinositol Transfer Protein Is Involved in Female Differentiation of Chinese Tongue Sole, Cynoglossus semilaevis. Front Genet 2022; 13:861763. [PMID: 35432449 PMCID: PMC9006047 DOI: 10.3389/fgene.2022.861763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol transfer protein (pitp) plays an important role in phospholipid transfer in animals. A pitp variant (pitpβ_w) in Chinese tongue sole was identified by transcriptomic analysis for its female-biased expression. The coding sequence of pitpβ_w was 816 bp, encoding a 371-amino-acid protein. pitpβ_w showed female-biased expression and was relatively high in brain, muscle, and ovary tissues. In different developmental stages of the ovary, pitpβ_w could be detected from 40 days until 3 years post hatching, and the highest expression was observed at 90 days. In situ hybridization revealed that pitpβ_w was predominantly localized in early-stage oocytes (I-III stages). After siRNA-mediated knockdown of pitpβ_w in an ovarian cell line, the expression of sox9a was reduced, while that of figla_tv1 and sox9b was significantly increased. Our findings suggest that pitpβ_w might be involved in female differentiation and early oogenesis.
Collapse
Affiliation(s)
- Yuxuan Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Jiangsu Ocean University, Lianyungang, China
| | - Mengqian Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Peng Cheng
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Zhihong Gong
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Xihong Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Na Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China
| | - Min Wei
- Jiangsu Ocean University, Lianyungang, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, China
| | - Wenteng Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|