1
|
Lin YC, Papadopoulos V. Expression of pregnenolone-synthesizing enzymes CYP11A1 and CYP1B1 in the human, rat, and mouse brain. Steroids 2024; 212:109521. [PMID: 39395524 DOI: 10.1016/j.steroids.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The central nervous system (CNS) is capable of synthesizing steroids for modulating essential functions such as neurotransmission, neuroplasticity, and neuroinflammation. These locally synthesized steroids, called neurosteroids, are produced through the conversion of cholesterol into the major steroid precursor pregnenolone, followed by downstream metabolism to form various steroids such as progesterone and allopregnanolone. Given that changes in neurosteroids are implicated in many neurological and psychiatric disorders, understanding the neurosteroidogenesis pathway is crucial. Recent studies have demonstrated an alternative pathway for the biosynthesis of pregnenolone, which is classically produced by CYP11A1 but was found instead to be made by CYP1B1 in human glial cells. However, numerous studies have demonstrated Cyp11a1 expression and activity in rodent brain tissue and brain cells. To elucidate whether species differences exist for the pregnenolone synthesis enzyme in human and rodent brains, we sought to directly compare the expression levels of CYP11A1 and CYP1B1 in human, rat, and mouse CNS tissues. We found that CYP1B1 mRNA expression was significantly higher than that of CYP11A1 in almost all CNS brain regions in human, rat, and mouse. The exception is in the mouse cerebral cortex, where Cyp11a1 RNA was more abundant than Cyp1b1. However, Cyp11a1 protein was clearly detectable in rodent CNS while completely undetectable in human brain. In contrast, the presence of CYP1B1 protein can be observed in both human and rodent brains. These results suggest that CYP1B1 is likely the dominant pregnenolone synthesis enzyme in the human brain, while rodent brains may use both Cyp11a1 and Cyp1b1.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Fahey JV, Bodwell JE, Hickey DK, Ghosh M, Muia MN, Wira CR. New approaches to making the microenvironment of the female reproductive tract hostile to HIV. Am J Reprod Immunol 2011; 65:334-43. [PMID: 21223421 DOI: 10.1111/j.1600-0897.2010.00949.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The studies presented in this review explore three distinct areas with potential for inhibiting HIV infection in women. Based on emerging information from the physiology, endocrinology and immunology of the female reproductive tract (FRT), we propose unique 'works in progress' for protecting women from HIV. Various aspects of FRT immunity are suppressed by estradiol during the menstrual cycle, making women more susceptible to HIV infection. By engineering commensal Lactobacillus to secrete the anti-HIV molecule Elafin as estradiol levels increase, women could be protected from HIV infection. Selective estrogen response modifiers enhance barrier integrity and enhance secretion of protective anti-HIV molecules. Finally, understanding the interactions and regulation of FRT endogenous antimicrobials, proteases, antiproteases, etc., all of which are under hormonal control, will open new avenues to therapeutic manipulation of the FRT mucosal microenvironment. By seeking new alternatives to preventing HIV infection in women, we may finally disrupt the HIV pandemic.
Collapse
Affiliation(s)
- John V Fahey
- Department of Physiology and Neurobiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Gamboa da Costa G, Marques MM, Fu X, Churchwell MI, Wang YP, Doerge DR, Beland FA. Effect of N,N-didesmethyltamoxifen upon DNA adduct formation by tamoxifen and alpha-hydroxytamoxifen. Cancer Lett 2007; 257:191-8. [PMID: 17765393 DOI: 10.1016/j.canlet.2007.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
Tamoxifen undergoes sequential metabolism to N-desmethyltamoxifen and N,N-didesmethyltamoxifen. Whereas N-desmethyltamoxifen is a major metabolite in humans, nonhuman primates, and rats, appreciable concentrations of N,N-didesmethyltamoxifen are formed in humans and nonhuman primates but not in rats. This difference in the extent of N,N-didesmethyltamoxifen formation may be important because it has been proposed that N,N-didesmethyltamoxifen inhibits the cytochrome P450 (CYP)-catalyzed alpha-hydroxylation of tamoxifen and resultant tamoxifen-DNA adduct formation. To test this hypothesis directly, we compared the extent of tamoxifen-DNA adduct formation in rats co-administered 27micromol N,N-didesmethyltamoxifen per kg body weight and either 27micromol tamoxifen per kg body weight or 27micromol alpha-hydroxytamoxifen per kg body weight daily for 7days. Female Sprague-Dawley rats treated with N,N-didesmethyltamoxifen had a 44% decrease (p >0.05) in CYP 3A2 content (the CYP isoform responsible for tamoxifen alpha-hydroxylation), an 18% decrease (p =0.010) in CYP 3A activity, and higher blood levels of tamoxifen and N-desmethyltamoxifen compared to rats treated with solvent. Total tamoxifen-DNA adduct levels were 4.1-fold higher (p <0.001) in rats given alpha-hydroxytamoxifen as compared to tamoxifen. N,N-Didesmethyltamoxifen treatment caused a 1.2-fold increase in total tamoxifen-DNA adduct levels with both tamoxifen and alpha-hydroxytamoxifen, a difference that was not significant. These results indicate that, with this experimental model, N,N-didesmethyltamoxifen does not impair the metabolism of tamoxifen to a reactive electrophile.
Collapse
Affiliation(s)
- Gonçalo Gamboa da Costa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
4
|
Aidoo A, Bishop ME, Shelton SD, Lyn-Cook LE, Chen T, Manjanatha MG. Effects of daidzein, genistein, and 17beta-estradiol on 7,12-dimethylbenz[a]anthracene-induced mutagenicity and uterine dysplasia in ovariectomized rats. Nutr Cancer 2006; 53:82-90. [PMID: 16351510 DOI: 10.1207/s15327914nc5301_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Phytoestrogens, primarily isoflavones daidzein (DZ) and genistein (GE), are increasingly used by postmenopausal women as an alternative to hormone replacement therapy due to reports that estrogen therapy increases the risk of breast and endometrial cancers. These compounds, as estrogen receptor agonists, may influence chemical carcinogenesis in estrogen-responsive tissues such as the uterus. We utilized ovariectomized (OVX) rats to model menopause and assessed the effects of dietary DZ, GE, or 17beta-estradiol (E2) on carcinogen-induced mutagenesis and carcinogenesis in the rat uterus. Big Blue transgenic rats (derived from Fischer 344 strain) were exposed to 7,12-dimethylbenz[a]anthracene (DMBA) in the presence or absence of the supplements. At 16- or 20-wk sacrifice, the uteri were removed and processed to determine mutant frequencies (MFs) and immunohistochemical or histopathological parameters, respectively. In rats treated with DMBA alone, a significant increase in lacI MFs (P < 0.01) in both OVX and intact (INT) rats was observed. The DMBA-induced MFs were not significantly altered by dietary DZ, GE, or E2 in both OVX and INT rats. Although dysplasia was not induced in the uterus of OVX and INT rats treated with DMBA alone, it was detected in 55% of OVX rats fed E2 alone and in 100% of OVX rats fed E2 along with DMBA exposure. Cell proliferation also was significantly higher in OVX rats fed E2 and treated with DMBA. In rats fed the isoflavones and treated with DMBA, the incidence of dysplasia was either reduced or virtually absent in both OVX and INT groups. These results indicate that a high incidence of dysplasia was associated with E2 feeding with or without DMBA treatment in the OVX rats, whereas the incidence was low in rats fed DZ or GE and treated with DMBA, suggesting a weak estrogen receptor agonist of DZ or GE in the rat uterus. The absence of dysplasia in OVX rats exposed to DMBA alone also suggests, in part, a promotional mechanism via estrogen- or isoflavone-driven cell proliferation.
Collapse
Affiliation(s)
- Anane Aidoo
- FDA Jefferson Laboratories, National Center for Toxicological Research, Division of Genetic and Reproductive Toxicology, Arkansas 72079, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Considering the wide range of chemicals known to disrupt adrenal function and the physiological importance of the adrenal cortex, it is surprising that endocrine disruption of the adrenal gland has not been more widely researched. The chemical nature of adrenal disruptors is highly varied, and there are features of the adrenal structure and function, which render it particularly vulnerable to toxic attack. However, the homeostatic mechanisms inherent in the hypothalamo-pituitary-adrenal axis mean that only the most catastrophic effects are recognized as adrenal disruption, such as in the case of etomidate. In order to detect potentially significant but milder forms of toxic disruption of adrenal function a new approach is needed; this requires the use of more sophisticated approaches than simply measuring one hormone at one time point. New methodologies are also needed, such as the use of human adrenal cell lines for the screening of toxins and for mechanistic investigation of adrenal disruptors. This review focuses on mechanisms of adrenal toxicity and on the challenges facing researchers in this important field.
Collapse
Affiliation(s)
- J P Hinson
- Centre for Endocrinology, WHRI, Barts and the London Queen Mary School of Medicine and Dentistry, First Floor John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
6
|
Stelck RL, Baker GL, Sutherland KM, Van Winkle LS. Estrous cycle alters naphthalene metabolism in female mouse airways. Drug Metab Dispos 2005; 33:1597-602. [PMID: 16085760 DOI: 10.1124/dmd.105.005124] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown variability in naphthalene cytotoxicity, expression of CYP2F2 gene and protein, and naphthalene metabolism in random cycling female mice (NIH:Swiss). CYP2F2 metabolizes naphthalene to cytotoxic metabolites in lungs of mice. This study was designed to address the question: do hormonal changes associated with the estrous cycle alter metabolism of naphthalene in the lung? Adult virgin female mice were manipulated into defined stages of the reproductive cycle: estrus, proestrus, and noncycling. Cycling was confirmed by cytology on vaginal swabs. At specific cycle times, extrapulmonary (tracheal and bronchial) and intrapulmonary (bronchiolar) conducting airways were microdissected from the lung parenchyma and incubated with naphthalene, and the products of naphthalene metabolism were trapped and measured using high-performance liquid chromatography. Circulating estradiol levels were measured at necropsy using an enzyme-linked immunosorbent assay. CYP2F2 gene expression was determined by airway level using real-time reverse transcription-polymerase chain reaction and did not vary by estrous cycle stage in intrapulmonary airways but did in extrapulmonary airways. Metabolism of naphthalene varied significantly by estrous cycle stage with the highest level of total metabolism occurring in proestrus (when estrogen is lowest) in intrapulmonary airways. Total activity and metabolite profiles in both extrapulmonary and intrapulmonary airways were affected by cycle stage. We conclude that the hormonal patterns associated with different stages of the estrous cycle 1) alter metabolism of naphthalene in the lungs of mice and 2) alter naphthalene metabolism differentially in extrapulmonary versus intrapulmonary airways.
Collapse
Affiliation(s)
- Rhonda L Stelck
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616-8732 USA
| | | | | | | |
Collapse
|
7
|
Chen T, Hutts RC, Mei N, Liu X, Bishop ME, Shelton S, Manjanatha MG, Aidoo A. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:409-418. [PMID: 15662719 DOI: 10.1002/em.20102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.
Collapse
Affiliation(s)
- Tao Chen
- Division of Genetic and Reproductive Toxicology, Food and Drug Administration/National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fu X, Latendresse JR, Muskhelishvili L, Blaydes BS, Delclos KB. Dietary modulation of 7,12-dimethylbenz[a]anthracene (DMBA)-induced adrenal toxicity in female Sprague-Dawley rats. Food Chem Toxicol 2005; 43:765-74. [PMID: 15778017 DOI: 10.1016/j.fct.2005.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
In this study, dietary modulation of 7,12-dimethylbenz[a]anthracene (DMBA)-induced adrenal toxicity in rats was investigated. Beginning at postnatal day (PND) 21, female Sprague-Dawley rats were fed either soy-containing NIH-31 diet or soy- and alfalfa-free 5K96 diet. On the first day of diestrus when the animals were PND 50 +/- 5, rats received either an oral dose of 80 mg/kg DMBA or sesame oil, the vehicle, and were sacrificed at 24, 36, or 48 h after treatment. Apoptosis was manifested at 24 and 36 h after DMBA treatment in the zona reticularis (ZR) and the zona fasciculata (ZF) of the adrenal cortex; this was followed by severe hemorrhagic necrosis at 48 h. DMBA-induced apoptosis, evaluated by the TUNEL assay, immunohistochemical analysis of activated caspase 3, and the ratio of expression of pro-apoptotic Bax to anti-apoptotic Bcl2, was greater in rats fed NIH-31 diet relative to rats fed 5K96 diet at 24 h after treatment. Four of six DMBA-treated rats fed 5K96 diet had severe adrenal necrosis by 48 h, whereas this lesion was present in only two of six DMBA-treated rats fed NIH-31 diet. DMBA also caused a significant decrease of serum corticosterone relative to controls at 48 h in rats fed 5K96 diet. The present study indicated that diet modulates DMBA-induced adrenal toxicity in female rats, with increased apoptosis early and reduced necrosis later in rats fed a soy-containing diet.
Collapse
Affiliation(s)
- Xin Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|
9
|
Scallet AC, Muskhelishvili L, Slikker W, Kadlubar FF. Sex differences in cytochrome P450 1B1, an estrogen-metabolizing enzyme, in the rhesus monkey telencephalon. J Chem Neuroanat 2005; 29:71-80. [PMID: 15589702 DOI: 10.1016/j.jchemneu.2004.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 09/21/2004] [Accepted: 09/23/2004] [Indexed: 11/27/2022]
Abstract
The metabolic enzyme CYP1B1 is a recently cloned member of the cytochrome P450 superfamily, expressed widely throughout primate tissue, including the CNS. Although CYP1B1 protein is known to metabolize estradiol to catecholestrogens in the uterus, its localization and function in brain have not yet been described. To better understand CYP1B1 distribution, we have combined in situ hybridization (ISH) for its mRNA with immunohistochemistry (IHC) for the CYP1B1 protein in selected brain regions of male and female adult rhesus monkeys (Macaca mulatta). Blocks of formalin-fixed tissue obtained from the frontal cortex, hippocampus, thalamus, and amygdala were processed and embedded in paraffin. They were then sectioned and stained as described for human tissue [Muskhelishvili, L., Thompson, P.A., Kusewitt, D.F., Wang, C., Kadlubar, F.F., 2001. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J. Histochem. Cytochem. 49, 229-236]. Results indicated widespread distribution of CYP1B1 mRNA in both male and female monkey frontal cortex, hippocampus, thalamus, and amygdala. In contrast, although CYP1B1 protein was co-localized with its mRNA in the female brains, it was primarily restricted to hippocampal pyramidal neurons in the male brains. These results suggest that CYP1B1 may subserve widespread metabolic functions in the female primate brain but have more restricted actions within the hippocampal pyramidal neurons of the male.
Collapse
Affiliation(s)
- Andrew C Scallet
- Division of Neurotoxicology, National Center for Toxicological Research, NCTR/FDA, 3900 NCTR Drive, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|