1
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber's hereditary optic neuropathy. Mitochondrion 2018; 46:270-277. [PMID: 30081212 DOI: 10.1016/j.mito.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by acute bilateral vision loss. The pathophysiology involves reactive oxygen species (ROS), which can be affected by medications. This article reviews the evidence for medications with demonstrated and theoretical effects on mitochondrial function, specifically in relation to increased ROS production. The data reviewed provides guidance when selecting medications for individuals with LHON mutations (carriers) and are susceptible to conversion to affected. However, as with all medications, the proven benefits of these therapies must be weighed against, in some cases, purely theoretical risks for this unique patient population.
Collapse
Affiliation(s)
- Kaitlin Kogachi
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Anna Ter-Zakarian
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Samuel Asanad
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Alfredo Sadun
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Rustum Karanjia
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA; The Ottawa Eye Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8M2, Canada; Ottawa Hospital Research Institute, 1053 Carling Avenue, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
3
|
Cheng HH, Chou CT, Sun TK, Liang WZ, Cheng JS, Chang HT, Tseng HW, Kuo CC, Chen FA, Kuo DH, Shieh P, Jan CR. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells. Hum Exp Toxicol 2015; 34:1096-105. [PMID: 25636639 DOI: 10.1177/0960327115569810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis.
Collapse
Affiliation(s)
- H-H Cheng
- Department of Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung Institute of Technology, Chia-Yi, Taiwan Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | - T-K Sun
- Division of Pediatrics, St. Joseph Hospital, Kaohsiung, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - J-S Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-T Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - H-W Tseng
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - F-A Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - D-H Kuo
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - P Shieh
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Neri-Cruz N, Gómez-Oliván LM, Galar-Martínez M, Del Socorro Romero-Figueroa M, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, SanJuan-Reyes N. Oxidative stress in Cyprinus carpio induced by hospital wastewater in Mexico. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:181-193. [PMID: 25336044 DOI: 10.1007/s10646-014-1371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
The very wide range of activities performed in hospitals (care, diagnosis, hygiene, maintenance, research) require the use of a large variety of potentially ecotoxic substances such as surfactants, metals, disinfectants and pharmaceuticals. This study aimed to determine oxidative stress in the common carp Cyprinus carpio induced by hospital wastewater (HWW) in Mexico. The median lethal concentration (LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed to the latter value (0.5 %) for 24, 48, 72 and 96 h, and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxide content (HPC), malondialdehyde (MDA) content, protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Significant increases in HPC, MDA content and PCC were observed in exposed specimens, particularly in gill, liver and brain. SOD and CAT activity also increased in liver and brain. In conclusion, this particular HWW induces oxidative stress on C. carpio, this damage being most evident in gill, liver and brain.
Collapse
Affiliation(s)
- Nadia Neri-Cruz
- Laboratorio de Toxicología Ambiental, Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
5
|
González-González ED, Gómez-Oliván LM, Galar-Martínez M, Vieyra-Reyes P, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, Razo-Estrada C, Pérez-Pastén R. Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce oxidative stress in gill, blood, and muscle of common carp (Cyprinus carpio). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:281-295. [PMID: 24916851 DOI: 10.1007/s00244-014-0048-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
Many toxic xenobiotics that enter the aquatic environment exert their effects through redox cycling. Oxidative stress, which incorporates both oxidative damage and antioxidant defenses, is a common effect induced in organisms exposed to xenobiotics in their environment. The results of the present study aimed to determine the oxidative stress induced in the common carp Cyprinus carpio by contaminants [metals and nonsteroidal anti-inflammatory drugs (NSAIDs)] present in Madín Reservoir. Five sampling stations (SSs), considered to have the most problems due to discharges, were selected. Carp were exposed to water from each SS for 96 h, and the following biomarkers were evaluated in gill, blood, and muscle: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the activity of antioxidant enzymes superoxide dismutase and catalase. Results show that contaminants (metals and NSAIDs) present in water from the different SSs induce oxidative stress. Thus, water in this reservoir is contaminated with xenobiotics that are hazardous to C. carpio, a species consumed by the local human population.
Collapse
Affiliation(s)
- Edgar David González-González
- Laboratorio de Toxicología Ambiental, Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Neri-Cruz N, Dublán-García O. Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5157-5166. [PMID: 24390115 DOI: 10.1007/s11356-013-2477-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
Although trace concentrations of ibuprofen (IBP) have been detected in diverse water bodies, there is currently insufficient information on the potentially deleterious effects of this xenobiotic. The present study aimed to determine whether IBP induces oxidative stress in brain, liver, gill, and blood of the common carp Cyprinus carpio. To this end, the median lethal concentration at 96 h (96-h LC50) was determined and the lowest observed adverse effect level was established. Carp were exposed to the latter concentration (17.6 mg L(-1)) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Results indicated that LPX and antioxidant enzymes' activity increased significantly (p < 0.05) with respect to the control group in liver, gill, and blood, while no significant differences occurred in brain. In conclusion, IBP induced oxidative stress on C. carpio, the liver being the organ most affected by this damage.
Collapse
Affiliation(s)
- Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | | | | | | | | | | |
Collapse
|
7
|
Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Valdés-Alanís A, Islas-Flores H, Neri-Cruz N. Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 2014; 37:391-9. [PMID: 24393029 DOI: 10.3109/01480545.2013.870191] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used pharmaceuticals in Mexico, but there is not proper regulation on the sale, use and disposal. These drugs can enter water bodies by diverse pathways, attaining significant concentrations and inducing damage on hydrobionts. OBJECTIVE To evaluate the oxidative stress and consequent damage to genetic material induced by DCF, IBP and NPX on Daphnia magna. METHODS The acute toxicity assays were performed to 48-h by nonsteroidal anti-inflammatory drugs evaluated. A sublethal assay were done after 48 h of exposure to DCF, IBP and NPX added to water with the concentration equivalent to the lowest observed adverse effect level (LOAEL), 9.7 mg/L for DCF, 2.9 mg/L for IBP and 0.017 mg/L for NPX. The DNA damage (comet assay) was evaluated at 12, 48 and 96 h. The oxidative biomarkers were evaluated: lipid peroxidation; protein carbonyl content; activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. RESULTS D. magna exposed to DCF, IBP and NPX showed a significant increase (p < 0.05) with respect to controls in LPX. PCC was increased in IBP exposure. SOD and CAT activity were increased by exposure to IBP and NPX. GPX shows a significant increase with respect to control in IBP and DCF exposure and significant decrease by NPX exposure. DNA damage was observed in 48 and 96 h. DISCUSSION AND CONCLUSION DCF, IBP and NPX were responsible of alterations in biochemical biomarkers evaluated and DNA damage.
Collapse
Affiliation(s)
- Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México , Toluca, State of Mexico , Mexico and
| | | | | | | | | | | |
Collapse
|
8
|
Catabolism of amino acids in livers from cafeteria-fed rats. Mol Cell Biochem 2012; 373:265-77. [PMID: 23117227 DOI: 10.1007/s11010-012-1499-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Abstract
Most studies using a hypercaloric diet to induce obesity have focused on the metabolism of fat and carbohydrates. Less concern has been given to the metabolism of amino acids, despite evidence of modifications in nitrogen metabolism during obesity. The aim of this study was to evaluate amino acid metabolism in livers from cafeteria diet-induced obese rats. Blood parameters were analysed, and histological sections of livers were stained with Sudan III. The enzymatic activities of some enzymes were determined in liver homogenates. Gluconeogenesis, ureagenesis, and oxygen consumption were evaluated in rat livers perfused with glutamine, alanine, or ammonium chloride. Compared to control rats, cafeteria-fed rats demonstrated higher levels of triacylglycerol and glucose in the blood and greater accumulation of fat in livers. Gluconeogenesis and urea production in livers perfused with glutamine and alanine at higher concentrations showed a substantial reduction in cafeteria-fed rats. However, no significant difference was observed among groups perfused with ammonium chloride. The activities of the enzymes alanine aminotransferase, glutaminase, and aspartate aminotransferase in the livers were reduced in cafeteria-fed rats. Taken together, these data are consistent with the hypothesis that livers from cafeteria diet-induced obese rats exhibit a limitation in their maximal capacity to metabolise glutamine and alanine to glucose, ammonia, and urea, not because of an impairment in gluconeogenesis and/or ureagenesis, but rather due to a depression in the activities of enzymes that catalyse the initial steps of amino acid metabolism.
Collapse
|
9
|
de Oliveira MC, Torrezan R, da Costa CEM, Ambiel CR, Constantin RP, Ishii-Iwamoto EL, Salgueiro-Pagadigorria CL. Changes in calcium fluxes in mitochondria, microsomes, and plasma membrane vesicles of livers from monosodium L-glutamate-obese rats. Metabolism 2011; 60:1433-41. [PMID: 21489575 DOI: 10.1016/j.metabol.2011.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/09/2011] [Accepted: 02/17/2011] [Indexed: 01/11/2023]
Abstract
The purpose of this work was to evaluate if the fat liver accumulation interferes with intracellular calcium fluxes and the liver glycogenolytic response to a calcium-mobilizing α(1)-adrenergic agonist, phenylephrine. The animal model of monosodium L-glutamate (MSG)-induced obesity was used. The adult rats develop obesity and steatosis. Calcium fluxes were evaluated through measuring the (45)Ca(2+) uptake by liver microsomes, inside-out plasma membrane, and mitochondria. In the liver, assessments were performed on the calcium-dependent glycogenolytic response to phenylephrine and the glycogen contents. The Ca(2+) uptake by microsomes and plasma membrane vesicles was reduced in livers from obese rats as a result of reduction in the Ca(2+)-ATPase activities. In addition, the plasma membrane Na(+)/K(+)-ATPase was reduced. All these matched effects could contribute to elevated resting intracellular calcium levels in the hepatocytes. Livers from obese rats, albeit smaller and with similar glycogen contents to those of control rats, released higher amounts of glucose in response to phenylephrine infusion, which corroborates these observations. Mitochondria from obese rats exhibited a higher capacity of retaining calcium, a phenomenon that could be attributed to a minor susceptibility of the mitochondrial permeability transition pore opening.
Collapse
Affiliation(s)
- Monique Cristine de Oliveira
- Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Silva PMDS, Tanabe E, Hermoso APM, Bersani-Amado CA, Bracht A, Ishii-Iwamoto EL, Salgueiro-Pagadigorria CL. Changes in calcium-dependent membrane permeability properties in mitochondria of livers from arthritic rats. Cell Biochem Funct 2008; 26:443-50. [DOI: 10.1002/cbf.1461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Dykens JA, Marroquin LD, Will Y. Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn 2007; 7:161-75. [PMID: 17331064 DOI: 10.1586/14737159.7.2.161] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial dysfunction is increasingly implicated in the etiology of drug-induced toxicities and negative side-effect profiles. Early identification of mitochondrial liabilities for new chemical entities is therefore crucial for avoiding late-stage attrition during drug development. Limitations of traditional methods for assessing mitochondrial dysfunction have discouraged routine evaluation of mitochondrial liabilities. To circumvent this bottleneck, a high-throughput screen has been developed that measures oxygen consumption; one of the most informative parameters for the assessment of mitochondrial status. This technique has revealed that some, but not all, members of many major drug classes have mitochondrial liabilities. This dichotomy encourages optimism that efficacy can be disassociated from mitochondrial toxicity, resulting in safer drugs in the future.
Collapse
Affiliation(s)
- James A Dykens
- Pfizer DSRD, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
12
|
Pagadigorria CLS, Marcon F, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL. Effects of methotrexate on calcium flux in rat liver mitochondria, microsomes and plasma membrane vesicles. Comp Biochem Physiol C Toxicol Pharmacol 2006; 143:340-8. [PMID: 16730477 DOI: 10.1016/j.cbpc.2006.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 03/25/2006] [Accepted: 03/26/2006] [Indexed: 11/30/2022]
Abstract
The metabolic effects of methotrexate in perfused livers are similar to those exerted by hormones acting through Ca(2+)-dependent mechanisms. The aim of the present study was to determine whether the effects of methotrexate are mediated by a direct action on cellular Ca(2+) fluxes. Methotrexate did not affect the ATP-dependent (45)Ca(2+) uptake by mitochondria, microsomes and inside-out plasma membrane vesicles and Ca(2+) efflux from plasma membrane vesicles. However, methotrexate was able to stimulate (45)Ca(2+) release from preloaded microsomes. The amount of Ca(2+) released by methotrexate was similar to that induced by IP(3). Methotrexate could be acting through the capacitative calcium entry mechanism.
Collapse
Affiliation(s)
- Clairce L S Pagadigorria
- Laboratory of Biological Oxidations, Department of Biochemistry, University of Maringá, 87020900 Maringá, Brazil
| | | | | | | | | |
Collapse
|
13
|
Gagné F, Bérubé E, Fournier M, Blaise C. Inflammatory properties of municipal effluents to Elliptio complanata mussels--lack of effects from anti-inflammatory drugs. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:332-7. [PMID: 16126009 DOI: 10.1016/j.cca.2005.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/10/2005] [Accepted: 06/12/2005] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to identify the pharmacological effects of anti-inflammatory drugs in freshwater mussels (Elliptio complanata) exposed to a primary-treated municipal effluent. Mussel specimens were injected with either increasing concentrations of ibuprofen or with a municipal effluent extract, and then left to stand for 24 h at 15 degrees C. They were also exposed to dilutions of a primary-treated effluent for 30 days at 15 degrees C under semi-static conditions. Gill and gonad cylcooxygenase (COX) were then determined after the incubation period. The influence of various drugs found in municipal effluents on serotonin and dopamine synaptosome transport was determined in visceral ganglia. The results show that injections of ibuprofen reduced COX activity nearly 4-fold in gills and 1.4-fold in gonads. However, COX activity was induced in both tissues after 24 h in mussels injected with a municipal effluent extract and after 30 days in those exposed to dilutions of the effluent. Moreover, synaptosomal dopamine transport activity was increased by ibuprofen, aspirin, caffeine and estradiol-17beta (E2), and decreased by loperamide and carbamazepine, suggesting increased and decreased turnover rates of this catecholamine, respectively. Serotonin transport activity was much less affected, decreasing with high doses of loperamide and increasing with ibuprofen, but with less intensity than with dopamine. The results suggest that although ibuprofen can effectively reduce COX activity in gill and gonadal tissues, exposure to both the municipal effluent and its organic extract increased COX activities, indicating the absence of NSAID (non-steroidal anti-inflammatory drugs)-related effects. Besides their known estrogenic and serotonergic properties, municipal effluents appear to elicit a state similar to inflammation in freshwater mussels.
Collapse
Affiliation(s)
- F Gagné
- Environment Canada, St. Lawrence Centre, 105 McGill Street, Montreal, Quebec, Canada H2Y 2E7.
| | | | | | | |
Collapse
|
14
|
Winters ME, Mehta AI, Petricoin EF, Kohn EC, Liotta LA. Supra-additive growth inhibition by a celecoxib analogue and carboxyamido-triazole is primarily mediated through apoptosis. Cancer Res 2005; 65:3853-60. [PMID: 15867384 DOI: 10.1158/0008-5472.can-04-1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combination studies of celecoxib and chemotherapeutic agents suggest that combining cyclooxygenase-2 inhibitors with other agents may have supra-additive or synergistic effects on tumor growth inhibition. Carboxyamido-triazole (CAI), a voltage-independent calcium channel inhibitor, has been shown to induce growth inhibition and apoptosis in cancer cells. We found that continuous exposure to cytostatic doses of CAI and LM-1685, a celecoxib analogue, reduced the proliferation and survival of seven human cancer cell lines by at least one log (P < or = 0.001) over either agent alone. To explore the mechanism of action of this combination, we further studied the effects of LM-1685/CAI on CCL-250 colorectal carcinoma cells. We found that the supra-additive antiproliferative effects occurred throughout a range of LM-1685 doses (5-25 micromol/L) and paralleled a decrease in COX-2 activity as measured by prostaglandin E2 production. In these cells, treatment with LM-1685/CAI suppressed the extracellular signal-regulated kinase pathway within the first hour but ultimately results in high, sustained activation of ERK over a 9-day period (P = 0.0005). Suppression of cyclin D1 and phospho-AKT, and cleavage of caspase-3 and PARP were concomitant with persistent ERK activation. Addition of PD98059, a MEK-1 inhibitor, suppressed ERK activation and significantly but incompletely reversed these signaling events and apoptosis. Flow cytometry experiments revealed that the CAI/LM-1685 combination induced a 3-fold increase in apoptosis over control (P = 0.005) in 3 days. We show that the combination of CAI and LM-1685 produces a cytotoxic effect by suppressing proliferation and triggering apoptosis.
Collapse
Affiliation(s)
- Mary E Winters
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|