1
|
Gostyńska A, Buzun K, Żółnowska I, Krajka-Kuźniak V, Mańkowska-Wierzbicka D, Jelińska A, Stawny M. Natural bioactive compounds-The promising candidates for the treatment of intestinal failure-associated liver disease. Clin Nutr 2024; 43:1952-1971. [PMID: 39032247 DOI: 10.1016/j.clnu.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Parenteral nutrition (PN) is a life-saving procedure conducted to maintain a proper nutritional state in patients with severe intestinal failure who cannot be fed orally. A serious complication of PN therapy is liver failure, known as intestinal failure-associated liver disease (IFALD). The pathogenesis of IFALD is multifactorial and includes inhibition of the farnesoid X receptor (FXR) by PN components, bacteria translocation from impaired intestines, and intravenous line-associated bloodstream infection. Currently, the most frequently researched therapeutic option for IFALD is using lipid emulsions based on soy or fish oil and, therefore, free from phytosterols known as FXR antagonists. Nevertheless, the potential side effects of the lack of soybean oil delivery seem to outweigh the benefits, especially in the pediatric population. PN admixture provides all the necessary nutrients; however, it is deprived of exogenous natural bioactive compounds (NBCs) of plant origin, such as polyphenols, characterized by health-promoting properties. Among them, many substances have already been known to demonstrate the hepatoprotective effect in various liver diseases. Therefore, searching for new therapeutic options for IFALD among NBCs seems reasonable and potentially successful. This review summarizes the recent research on polyphenols and their use in treating various liver diseases, especially metabolic dysfunction-associated steatotic liver diseases (MASLD). Furthermore, based on scientific reports, we have described the molecular mechanism of action of selected NBCs that exert hepatoprotective properties. We also summarized the current knowledge on IFALD pathogenesis, described therapeutic options undergoing clinical trials, and presented the future perspective of the potential use of NBCs in PN therapy.
Collapse
Affiliation(s)
- Aleksandra Gostyńska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Kamila Buzun
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Izabela Żółnowska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dorota Mańkowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Zhao X, Luo T, Qiu Y, Yang Z, Wang D, Wang Z, Zeng J, Bi Z. Mechanisms of traditional Chinese medicine overcoming of radiotherapy resistance in breast cancer. Front Oncol 2024; 14:1388750. [PMID: 38993643 PMCID: PMC11237312 DOI: 10.3389/fonc.2024.1388750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy among women, with radiotherapy serving as a primary treatment modality. Despite radiotherapy, a subset of breast cancer patients experiences local recurrence, attributed to the intrinsic resistance of tumors to radiation. Therefore, there is a compelling need to explore novel approaches that can enhance cytotoxic effects through alternative mechanisms. Traditional Chinese Medicine (TCM) and its active constituents exhibit diverse pharmacological actions, including anti-tumor effects, offering extensive possibilities to identify effective components capable of overcoming radiotherapy resistance. This review delineates the mechanisms underlying radiotherapy resistance in breast cancer, along with potential candidate Chinese herbal medicines that may sensitize breast cancer cells to radiotherapy. The exploration of such herbal interventions holds promise for improving therapeutic outcomes in the context of breast cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Luo
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Yuting Qiu
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Zhiwei Yang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zairui Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiale Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Devabattula G, Panda B, Yadav R, Godugu C. The Potential Pharmacological Effects of Natural Product Withaferin A in Cancer: Opportunities and Challenges for Clinical Translation. PLANTA MEDICA 2024; 90:440-453. [PMID: 38588695 DOI: 10.1055/a-2289-9600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cancer is one of the biggest health concerns with a complex pathophysiology. Currently, available chemotherapeutic drugs are showing deleterious side effects, and tumors often show resistance to treatment. Hence, extensive research is required to develop new treatment strategies to fight against cancer. Natural resources from plants are at the forefront of hunting novel drugs to treat various types of cancers. Withaferin A (WA) is a naturally occurring withanolide, a biologically active component obtained from the plant Ashwagandha. Various in vitro and in vivo oncological studies have reported that Withaferin A (WA) has shown protection from cancer. WA shows its activity by inhibiting the growth and proliferation of malignant cells, apoptosis, and inhibiting angiogenesis, metastasis, and cancer stem cells (CSCs). In addition, WA also showed chemo- and radio-sensitizing properties. Besides the beneficiary pharmacological activities of WA, a few aspects like pharmacokinetic properties, safety, and toxicity studies are still lacking, hindering this potent natural product from entering clinical development. In this review, we have summarized the various pharmacological mechanisms shown by WA in in vitro and in vivo cancer studies and the challenges that must be overcome for this potential natural product's clinical translation to be effective.
Collapse
Affiliation(s)
- Geetanjali Devabattula
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Biswajit Panda
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Rachana Yadav
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Chandraiah Godugu
- Pharamacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| |
Collapse
|
4
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
5
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Checker R, Bhilwade HN, Nandha SR, Patwardhan RS, Sharma D, Sandur SK. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicol Appl Pharmacol 2023; 461:116389. [PMID: 36716864 DOI: 10.1016/j.taap.2023.116389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Increasing use of ionizing radiation (IR) in medicine, industry, agriculture and research ensues potential health hazards if not used properly or contained effectively. However, radioprotectors which are effective in clinical and/or accidental radiation exposures are still elusive. In this direction, we have explored the radioprotective potential of Withaferin A, a plant withanolide, which was recently shown to be safe and well tolerated in cancer patients in a clinical trial and is also known to be a radio-sensitizer in cancer cells. Our results show that, Withaferin A (WA) protected only normal lymphocytes, but not cancer cells, against IR-induced apoptosis and offered radioprotection even when added post-radiation exposure. WA treatment led to significant inhibition of IR-induced caspase-3 activation and decreased IR-induced DNA damage to lymphocytes and bone-marrow cells. WA reduced intracellular ROS and GSH levels and only thiol based anti-oxidants could abrogate the radio-protective effects of WA, indicating a crucial role of cellular/protein thiols in its biological activity. The inability of WA-glutathione adduct to offer radioprotection further underscored the role of cellular thiols. WA induced pro-survival transcription factor, Nrf-2, and expression of cytoprotective genes HO-1, catalase, SOD, peroxiredoxin-2 via ERK. Further, WA administration could rescue mice against radiation induced mortality, DNA damage, increase in micro-nucleated polychromatic erythrocytes (mn-PCEs) and increased ratio of polychromatic erythrocytes (PCEs) to Normochromatic Erythrocytes (NCEs) in bone-marrow, demonstrating its potent in vivo the radio-protective efficacy. In conclusion, WA selectively protects normal cells against IR-induced apoptosis via activation of cytoprotective Nrf-2 pathway.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - H N Bhilwade
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Kumar S, Mathew SO, Aharwal RP, Tulli HS, Mohan CD, Sethi G, Ahn KS, Webber K, Sandhu SS, Bishayee A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel) 2023; 16:160. [PMID: 37259311 PMCID: PMC9966696 DOI: 10.3390/ph16020160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 08/04/2023] Open
Abstract
Cancer represents the second most deadly disease and one of the most important public health concerns worldwide. Surgery, chemotherapy, radiation therapy, and immune therapy are the major types of treatment strategies that have been implemented in cancer treatment. Unfortunately, these treatment options suffer from major limitations, such as drug-resistance and adverse effects, which may eventually result in disease recurrence. Many phytochemicals have been investigated for their antitumor efficacy in preclinical models and clinical studies to discover newer therapeutic agents with fewer adverse effects. Withaferin A, a natural bioactive molecule isolated from the Indian medicinal plant Withania somnifera (L.) Dunal, has been reported to impart anticancer activities against various cancer cell lines and preclinical cancer models by modulating the expression and activity of different oncogenic proteins. In this article, we have comprehensively discussed the biosynthesis of withaferin A as well as its antineoplastic activities and mode-of-action in in vitro and in vivo settings. We have also reviewed the effect of withaferin A on the expression of miRNAs, its combinational effect with other cytotoxic agents, withaferin A-based formulations, safety and toxicity profiles, and its clinical potential.
Collapse
Affiliation(s)
- Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Stephen O. Mathew
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur 482 001, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
8
|
Singh M, Agrawal S, Afzal O, Altamimi ASA, Redhwan A, Alshammari N, Patel M, Adnan M, Elasbali AM, Khan S. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites 2022; 12:854. [PMID: 36144259 PMCID: PMC9502510 DOI: 10.3390/metabo12090854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed at optimizing conditions for increased withanolide production in Withania somnifera. The elicitors used for the foliar spray on the aerial parts of the plant were salicylic acid, jasmonic acid, and chitosan for the enhancement of withanolides in Withania somnifera under different environmental regimes. Three different elicitors, i.e., chitosan, jasmonic acid and salicylic acid, were applied on the plants through foliar route every 15th day for 6 months, and later plants were used for sample preparation. Further, the elicitors were used in different concentration, i.e., jasmonic acid (50, 200 and 400 ppm), chitosan (10, 50 and 100 ppm) and salicylic acid (0.5, 1 and 2 ppm). The elicitors were sprayed on the foliar parts of the plant between 10:00-11:00 a.m. on application days. For elicitor spray, a calibrated sprayer was used. The withanolide A/withaferin A was quantified through HPLC. It was found that in an open environment, maximum withaferin A content, i.e., 0.570 mg/g (DW), was recorded with jasmonic acid (50 ppm) treatment in comparison to control (0.067 mg/g DW). Thus, there was an 8.5-fold increase in the withaferin A content. Maximum withanolide A content of 0.352 mg/g (DW) was recorded when chitosan (50 ppm) was sprayed, while in the control, withanolide A content was recorded to be 0.031 mg/g (DW); thus, chitosan application increased the production of withanolide A by 11.3-fold. Under controlled conditions, maximum withaferin A content of 1.659 mg/g (DW) was recorded when plants were sprayed with chitosan (100 ppm), which was 8.1 times greater than the control content of 0.203 mg/g (DW). Maximum withanolide A content of 0.460 mg/g (DW) was recorded when chitosan (100 ppm) was applied, whereas in the control, withanolide A content was found to be 0.061 mg/g (DW). Thus, foliar spraying of elicitors in very low concentrations can serve as a low-cost, eco-friendly, labor-intensive and elegant alternative approach that can be practiced by farmers for the enhancement, consistent production and improved yield of withanolide A/withaferin A. This can be a suitable way to enhance plant productivity, thus increasing the availability of withanolide A and withaferin A for the health and pharma industry.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
- Department of Biotechnology, Invertis University, Invertis Village, Bareilly- Lucknow National Highway, NH-24, Bareilly 243123, India
| | - Sanjeev Agrawal
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parole University, Vadodara 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Science, Qurayyat, Jouf University, Sakaka 72341, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur 247554, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
9
|
Salem HM, El-Saadony MT, Abd El-Mageed TA, Soliman SM, Khafaga AF, Saad AM, Swelum AA, Korma SA, Gonçalves Lima CM, Selim S, Babalghith AO, Abd El-Hack ME, Omer FA, AbuQamar SF, El-Tarabily KA, Conte-Junior CA. Promising prospective effects of Withania somnifera on broiler performance and carcass characteristics: A comprehensive review. Front Vet Sci 2022; 9:918961. [PMID: 36118334 PMCID: PMC9478662 DOI: 10.3389/fvets.2022.918961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Poultry production contributes markedly to bridging the global food gap. Many nations have limited the use of antibiotics as growth promoters due to increasing bacterial antibiotic tolerance/resistance, as well as the presence of antibiotic residues in edible tissues of the birds. Consequently, the world is turning to use natural alternatives to improve birds' productivity and immunity. Withania somnifera, commonly known as ashwagandha or winter cherry, is abundant in many countries of the world and is considered a potent medicinal herb because of its distinct chemical, medicinal, biological, and physiological properties. This plant exhibits antioxidant, cardioprotective, immunomodulatory, anti-aging, neuroprotective, antidiabetic, antimicrobial, antistress, antitumor, hepatoprotective, and growth-promoting activities. In poultry, dietary inclusion of W. somnifera revealed promising results in improving feed intake, body weight gain, feed efficiency, and feed conversion ratio, as well as reducing mortality, increasing livability, increasing disease resistance, reducing stress impacts, and maintaining health of the birds. This review sheds light on the distribution, chemical structure, and biological effects of W. somnifera and its impacts on poultry productivity, livability, carcass characteristics, meat quality, blood parameters, immune response, and economic efficiency.
Collapse
Affiliation(s)
- Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fatima A. Omer
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Synan F. AbuQamar
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
- Khaled A. El-Tarabily
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Tewari D, Chander V, Dhyani A, Sahu S, Gupta P, Patni P, Kalick LS, Bishayee A. Withania somnifera (L.) Dunal: Phytochemistry, structure-activity relationship, and anticancer potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153949. [PMID: 35151215 DOI: 10.1016/j.phymed.2022.153949] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ayurveda is a highly recognized, well-documented, and well-accepted traditional medicine system. This system utilizes many natural products in various forms for therapeutic purposes. Thousands of plants mentioned in the Ayurvedic system are useful in disease mitigation and health preservation. One potential plant of the Ayurvedic system is "Ashwagandha" [Withania somnifera (L.) Dunal], commonly regarded as Indian Ginseng. It possesses various therapeutic activities, such as neuroprotective, hypoglycemic, hepatoprotective, antiarthritic, and anticancer effects. PURPOSE Here we present a comprehensive insight on the anticancer effects of W. somnifera and mechanistic attributes of its bioactive phytocompounds. This review also provides updated information on the clinical studies pertaining to cancer, safety evaluation and opportunities for chemical modifications of withanolides, a group of specialized phytochemicals of W. somnifera. METHODS The present study was performed in accordance with the guidelines of the Preferred Reporting Items for Systemic Reviews and Meta-Analysis. Various scientific databases, such as PubMed, Science Direct, Scopus, Google Scholar, were explored for related studies published up to May 2021. RESULTS An updated review on the anticancer potential and mechanisms of action of the major bioactive components of W. somnifera, including withanolides, withaferin A and withanone, is presented. Comprehensive information on clinical attributes of W. somnifera and its active components are presented with the structure-activity relationship (SAR) and toxicity evaluation. CONCLUSION The outcome of the work clearly indicates that W. somnifera has a significant potential for cancer therapy. The SAR revealed that various withanolides in general and withaferin A in particular have binding energies against various proteins and tremendous potential to serve as the lead for new chemical entities. Nevertheless, additional studies, particularly well-designed clinical trials are required before therapeutic application of withanolides for cancer treatment.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Vikas Chander
- Department of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Archana Dhyani
- Department of Pharmaceutics, School of Pharmacy, Graphic Era Hill University, Dehradun 248001, Uttarakhand, India
| | - Sanjeev Sahu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pawan Gupta
- Shree SK Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Pooja Patni
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Lindsay S Kalick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
12
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
13
|
Sultana T, Okla MK, Ahmed M, Akhtar N, Al-Hashimi A, Abdelgawad H, Haq IU. Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules 2021; 26:molecules26247696. [PMID: 34946778 PMCID: PMC8705790 DOI: 10.3390/molecules26247696] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.
Collapse
Affiliation(s)
- Tahira Sultana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Madiha Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
14
|
Akter R, Najda A, Rahman MH, Shah M, Wesołowska S, Hassan SSU, Mubin S, Bibi P, Saeeda S. Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives. Molecules 2021; 26:5997. [PMID: 34641542 PMCID: PMC8512367 DOI: 10.3390/molecules26195997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cells' response to RT. Therefore, radiobiological research is emphasizing chemical compounds 'radiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea
- Department of Pharmacy, Southeast University, Banani Street, Dhaka 1213, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sylwia Wesołowska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego Street, 20-069 Lublin, Poland;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, China;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Parveen Bibi
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| | - Saeeda Saeeda
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (P.B.); (S.S.)
| |
Collapse
|
15
|
Singh N, Yadav SS, Rao AS, Nandal A, Kumar S, Ganaie SA, Narasihman B. Review on anticancerous therapeutic potential of Withania somnifera (L.) Dunal. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113704. [PMID: 33359918 DOI: 10.1016/j.jep.2020.113704] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera, commonly known as Ashwagandha, is an important medicinal herb belonging to family Solanaceae. It is widely used in folkloric and Ayurvedic medicines since antiquity. Traditionally, the plant is highly practiced throughout the globe as immunomodulator, anti-inflammatory, anti-stress, anti-parkinson, anti-alzheimer, cardio protective, neural and physical health enhancer, neurodefensive, anti-diabetic, aphrodisiac, memory boosting etc. The plant is also effective in combating various types of cancer and other related problems of colon, mammary, lung, prostate, skin, blood, liver and kidney. AIM OF THIS REVIEW The present review represents the critical assessment of the literature available on the anticancerous role of W. somnifera. The present study throws light on its diverse chemical compounds and the possible mechanisms of action involved. This review also suggests further research strategies to harness the therapeutic potential of this plant. MATERIALS AND METHODS The present review is the outcome of a systematic search of scientific literature about 'Withania somnifera and its role in cancer prevention'. The scientific databases viz. Google Scholar, Science Direct, Pubmed and Web of Science were searched from 2001 to 2019. Textbooks, magazines and newspapers were also consulted. This review summarizes all the published literature about its therapeutic potential for the treatment of different types of cancers. RESULTS W. somnifera has been widely used in traditional and ayurvedic medicines for treatment of numerous problems related to health and vitality. The plant is a reservoir of diverse phytoconstituents like alkaloids, steroids, flavonoids, phenolics, nitrogen containing compounds and trace elements. Withanolides are the major alkaloids which renders its anticancer potential due to its highly oxygenated nature. The plant is highly effective in combating various types of cancers viz. colon, mammary, lung, prostate, skin, blood, liver and kidney. Previous studies depict that this plant is more effective against breast cancer followed by colon, lung, prostate and blood cancer. Furthermore, from different clinical studies it has been observed that the active constituents of the plant like withaferin-A, withanolide-D have least toxic effects. CONCLUSION The present review confirms the various medicinal values of W. somnifera without any significant side effects. Withaferin-A (WA) and Withanolides are its most promising anticancer compounds that play a major role in apoptosis induction. Keeping in mind the anticancerous potential of this plant, it is suggested that this plant may further be investigated and more clinical studies can be performed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - S S Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.
| | - Amrender Singh Rao
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Abhishek Nandal
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - S A Ganaie
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - B Narasihman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| |
Collapse
|
16
|
Mukherjee PK, Banerjee S, Biswas S, Das B, Kar A, Katiyar CK. Withania somnifera (L.) Dunal - Modern perspectives of an ancient Rasayana from Ayurveda. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113157. [PMID: 32783987 DOI: 10.1016/j.jep.2020.113157] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, commonly known as Ashwagandha, is an important medicinal plant that has been used in Ayurvedic and indigenous medicine for more than 3000 years. According to Charaka Samhita, Susruta Samhita and other ancient texts, Ashwagandha is known as Balya (increases strength), Brusya (sexual performance enhancer), vajikari (spermatogenic), Kamarupini (libido-enhancing), Pustida (nourishing). AIM OF THE REVIEW This review article documented and critically assessed W. somnifera regarding its ethnopharmacology, traditional use, botanical description, phytochemicals present, pharmacological activities, clinical trials, and marketed formulations. MATERIALS AND METHODS The sources of information used in the study are traditional Ayurvedic books like Charaka Samhita, Susruta Samhita, Astanga Hridaya etc, government reports, dissertations, books, research articles and databases like Science-Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, and ACS Publications on Ashwagandha and Withania somnifera (L.) Dunal. RESULTS Traditional uses of Ashwagandha in Ayurveda are very prominent in several texts where formulations with various dosage forms have been mentioned in Charaka Samhita, Susruta Samhita, Astanga Hridaya, different nighantus etc. The drugs were identified based on their composition containing Ashwagandha as one of the major ingredients and their medicinal uses. Phytochemical studies on W. somnifera revealed the presence of important chemical constituents such as flavonoids, phenolic acids, alkaloids, saponins, tannins, and withanolides. The phytochemicals showed various pharmacological activities like anti-cancer, immunomodulatory, cardioprotective, neuroprotective, anti-aging, anti-stress/adaptogenic and anti-diabetic. Various clinical trials show that the plant extract and its bioactive compounds are used in the prevention and treatment of many diseases, such as arthritis, impotence, amnesia, anxiety, cancer, neurodegenerative and cardiovascular diseases, and others. CONCLUSIONS Pharmacological data reviewed here revealed that W. somnifera is a potential source for the treatment of a wide range of diseases especially anxiety and other CNS disorders. From its ancient use to its modern application it has been proven to be non-toxic and effective clinically for human health and wellness. W. somnifera based herbal formulation has been marketed in the form of supplement, extract, capsule, powder etc. This review will be helpful to correlate the mechanism of action with the phytochemical profile of this well-known plant from Ayurveda.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, A National Institute Under Dept. of Biotechnology, Govt. of India, Imphal, 795004, India.
| | - Subhadip Banerjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - C K Katiyar
- Health Care Division, Emami Limited 13, BT Road, Kolkata, 700056, India.
| |
Collapse
|
17
|
Azadpour M, Farajollahi MM, Varzi AM, Hashemzadeh P, Mahmoudvand H, Barati M. Extraction, Chemical Composition, Antioxidant Property, and In-vitro Anticancer Activity of Silymarin from Silybum marianum on Kb and A549 Cell Lines. Curr Drug Discov Technol 2021; 18:511-517. [PMID: 32860361 DOI: 10.2174/1570163817666200827111127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study aimed to evaluate the antioxidant property of Silymarin (SM) extracted from the seed of Silybum marianum and its anticancer activity on KB and A549 cell lines following 24, 48, and 72 h of treatment. METHODS Ten grams of powdered S. marianum seeds were defatted using n-hexane for 6 hours and then extracted by methanol. The Silymarin extracted of extraction components. The extracted components of Silymarin were measured by spectrophotometric assay and HPLC analysis. 2, 2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phenol content, total flavonoid content, and total antioxidant capacity were measured to detect the antioxidant properties of SM. The anticancer activity of the SM on cell lines evaluated by MTT. RESULTS In HPLC analysis, more than 50% of the peaks were related to silybin A and B. SM was reduced DPPH (the stable free radical) with a 50% inhibitory concentration (IC50) of 6.56 μg/ ml in comparison with butylated hydroxyl toluene (BHT), which indicated an IC50 of ~3.9 μg/ ml. The cytotoxicity effect of SM on the cell lines was studied by MTT assay. The cytotoxicity effect of the extracted Silymarin on KB and A549 cell lines was observed up to 80 and 70% at 156 and 78 μg/ml, respectively. The IC50 value of the extracted SM on KB and A549 cell lines after 24 hours of treatment was seen at 555 and 511 μg/ml, respectively. CONCLUSION Due to the good antioxidant and anticancer properties of the isolated Silymarin, its use as an anticancer drug is suggested.
Collapse
Affiliation(s)
- Mojgan Azadpour
- Research Center of Pediatric Infectious Diseases, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Morad Farajollahi
- Faculty of Science, Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Varzi
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Hashemzadeh
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Facutuly of Science, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra Barati
- Research Center of Pediatric Infectious Diseases, Hazrat-e-Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Mehta V, Chander H, Munshi A. Mechanisms of Anti-Tumor Activity of Withania somnifera (Ashwagandha). Nutr Cancer 2020; 73:914-926. [PMID: 33949906 DOI: 10.1080/01635581.2020.1778746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing herbal formulations have been used to treat several diseases including cancer. W. somnifera (Ashwagandha) is one such plant the extracts of which have been tested against a number of ailments including cancer, which remains as one of the most dreadful diseases on the globe. The ever-increasing number of cancer related mortality demands the development of novel chemopreventive agents with minimum side effects. Different compounds isolated from various parts of the plant like root, stem, and leaves have been reported to display significant anti-cancerous and immunomodulating properties and thus can be used alone or in combination with other chemotherapeutic drugs for cancer treatment. Through this review, we highlight the importance of W. somnifera in countering the potential oncogenic signaling mediators that are modulated by active constituents of W. somnifera in a variety of cancer types. Further, we hope that active constituents of W. somnifera will be tested in clinical trials so that they can be used as an important adjuvant in the near future for the effective treatment of cancer.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harish Chander
- National Institute of Biologicals, Noida, Uttar Pradesh, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
19
|
Saggam A, Tillu G, Dixit S, Chavan-Gautam P, Borse S, Joshi K, Patwardhan B. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112759. [PMID: 32173425 DOI: 10.1016/j.jep.2020.112759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (WS) is one of the moststudied Rasayana botanicals used in Ayurveda practice for its immunomodulatory, anti-aging, adaptogenic, and rejuvenating effects. The botanical is being used for various clinical indications, including cancer. Several studies exploring molecular mechanisms of WS suggest its possible role in improving clinical outcomes in cancer management. Therefore, research on WS may offer new insights in rational development of therapeutic adjuvants for cancer. AIM OF THIS REVIEW The review aims at providing a detailed analysis of in silico, in vitro, in vivo, and clinical studies related to WS and cancer. It suggests possible role of WS in regulating molecular mechanisms associated with carcinogenesis. The review discusses potential of WS in cancer management in terms of cancer prevention, anti-cancer activity, and enhancing efficacy of cancer therapeutics. MATERIAL AND METHODS The present narrative review offers a critical analysis of published literature on WS studies in cancer. The reported studies were analysed in the context of pathophysiology of cancer, commonly referred as 'cancer hallmarks'. The review attempts to bridge Ayurveda knowledge with biological insights into molecular mechanisms of cancer. RESULTS Critical analysisof the published literature suggests an anti-cancer potential of WS with a key role in cancer prevention. The possible mechanisms for these effects are associated with the modulation of apoptotic, proliferative, and metastatic markers in cancer. WS can attenuate inflammatory responses and enzymes involved in invasion and metastatic progression of cancer.The properties of WS are likely to be mediated through withanolides, which may activate tumor suppressor proteins to restrict proliferation of cancer cells. Withanolides also regulate the genomic instability, and energy metabolism of cancer cells. The reported studies indicate the need for deeper understanding of molecular mechanisms of WS in inhibiting angiogenesis and promoting immunosurveillance. Additionally, WS can augment efficacy and safety of cancer therapeutics. CONCLUSION The experimentally-supported evidence of immunomodulatory, anti-cancer, adaptogenic, and regenerative attributes of WS suggest its therapeutic adjuvant potential in cancer management. The adjuvant properties of withanolides can modulate multidrug resistance and reverse chemotherapy-induced myelosuppression. These mechanisms need to be further explored in systematically designed translational and clinical studies that will pave the way for integration of WS as a therapeutic adjuvant in cancer management.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
20
|
Lacombe J, Cretignier T, Meli L, Wijeratne EMK, Veuthey JL, Cuendet M, Gunatilaka AAL, Zenhausern F. Withanolide D Enhances Radiosensitivity of Human Cancer Cells by Inhibiting DNA Damage Non-homologous End Joining Repair Pathway. Front Oncol 2020; 9:1468. [PMID: 31970089 PMCID: PMC6960174 DOI: 10.3389/fonc.2019.01468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Along with surgery and chemotherapy, radiation therapy (RT) is an important modality in cancer treatment, and the development of radiosensitizers is a current key challenge in radiobiology to maximize RT efficiency. In this study, the radiosensitizing effect of a natural compound from the withanolide family, withanolide D (WD), was assessed. Clonogenic assays showed that a 1 h WD pretreatment (0.7 μM) before irradiation decreased the surviving fraction of several cancer cell lines. To determine the mechanisms by which WD achieved its radiosensitizing effect, we then assessed whether WD could promote radiation-induced DNA damages and inhibit double-strand breaks (DSBs) repair in SKOV3 cells. Comet and γH2AX/53BP1 foci formation assays confirmed that DSBs were higher between 1 and 24 h after 2 Gy-irradiation in WD-treated cells compared to vehicle-treated cells, suggesting that WD induced the persistence of radiation-induced DNA damages. Immunoblotting was then performed to investigate protein expression involved in DNA repair pathways. Interestingly, DNA-PKc, ATM, and their phosphorylated forms appeared to be inhibited 24 h post-irradiation in WD-treated samples. XRCC4 expression was also down-regulated while RAD51 expression did not change compared to vehicle-treated cells suggesting that only non-homologous end joining (NHEJ) pathways was inhibited by WD. Mitotic catastrophe (MC) was then investigated in SKOV3, a p53-deficient cell line, to assess the consequence of such inhibition. MC was induced after irradiation and was predominant in WD-treated samples as shown by the few numbers of cells pursuing into anaphase and the increased amount of bipolar metaphasic cells. Together, these data demonstrated that WD could be a promising radiosensitizer candidate for RT by inhibiting NHEJ pathway and promoting MC. Additional studies are required to better understand its efficiency and mechanism of action in more relevant clinical models.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Titouan Cretignier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Laetitia Meli
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Hasan Abdali M, Afshar S, Sedighi Pashaki A, Dastan D, Gholami MH, Mahmoudi R, Saidijam M. Investigating the effect of radiosensitizer for Ursolic Acid and Kamolonol Acetate on HCT-116 cell line. Bioorg Med Chem 2020; 28:115152. [PMID: 31771799 DOI: 10.1016/j.bmc.2019.115152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/10/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was evaluating the cytotoxic and radiosensitizing effects of Ursolic Acid (UA) and Kamolonol Acetate (KA) on HCT116 cell line and finally investigating the functional role of NF-κB and CCND1 genes in the radiosensitizing activity of UA and KA. MATERIALS AND METHOD The cytotoxic effects of UA and KA by MTT assay was evaluated on HCT-116. Clonogenic assay was performed to investigate of radiosensitizing effects of UA and KA on HCT116. To assessment the expression levels of NF-κB and CCND1 genes, real-time PCR method was used. RESULTS The results of MTT assay revealed that UA and KA have cytotoxic effects on HCT116 cell line. According to clonogenic assay, survival fraction of treated cells with UA and KA has been decreased compared to the survival fraction of untreated cells. UA and KA lead to the decrease in the expression level of NF-κB. Synergistic effect of radiosensitizing agents with radiation was only approved for UA and 2 Gy of radiation. CONCLUSION Based on our study, UA and KA have cytotoxic effects on HCT116 cell line. Furthermore, UA may lead to radiosensitization of human colorectal tumor cells by NF-κB1 and CCND1signaling pathways.
Collapse
Affiliation(s)
- Maede Hasan Abdali
- Department of Medical Physics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Calvaruso M, Pucci G, Musso R, Bravatà V, Cammarata FP, Russo G, Forte GI, Minafra L. Nutraceutical Compounds as Sensitizers for Cancer Treatment in Radiation Therapy. Int J Mol Sci 2019; 20:ijms20215267. [PMID: 31652849 PMCID: PMC6861933 DOI: 10.3390/ijms20215267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
The improvement of diagnostic techniques and the efficacy of new therapies in clinical practice have allowed cancer patients to reach a higher chance to be cured together with a better quality of life. However, tumors still represent the second leading cause of death worldwide. On the contrary, chemotherapy and radiotherapy (RT) still lack treatment plans which take into account the biological features of tumors and depend on this for their response to treatment. Tumor cells' response to RT is strictly-connected to their radiosensitivity, namely, their ability to resist and to overcome cell damage induced by ionizing radiation (IR). For this reason, radiobiological research is focusing on the ability of chemical compounds to radiosensitize cancer cells so to make them more responsive to IR. In recent years, the interests of researchers have been focused on natural compounds that show antitumoral effects with limited collateral issues. Moreover, nutraceuticals are easy to recover and are thus less expensive. On these bases, several scientific projects have aimed to test also their ability to induce tumor radiosensitization both in vitro and in vivo. The goal of this review is to describe what is known about the role of nutraceuticals in radiotherapy, their use and their potential application.
Collapse
Affiliation(s)
- Marco Calvaruso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Rosa Musso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Francesco P Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Giusi I Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), 90015 Cefalù (PA), Italy.
| |
Collapse
|
23
|
Perestelo NR, Llanos GG, Reyes CP, Amesty A, Sooda K, Afshinjavid S, Jiménez IA, Javid F, Bazzocchi IL. Expanding the Chemical Space of Withaferin A by Incorporating Silicon To Improve Its Clinical Potential on Human Ovarian Carcinoma Cells. J Med Chem 2019; 62:4571-4585. [PMID: 31008605 DOI: 10.1021/acs.jmedchem.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ovarian cancer represents the seventh most commonly diagnosed cancer worldwide. Herein, we report on the development of a withaferin A (WA)-silyl ether library with 30 analogues reported for the first time. Cytotoxicity assays on human epithelial ovarian carcinoma cisplatin-sensitive and -resistant cell lines identified eight analogues displaying nanomolar potency (IC50 ranging from 1 to 32 nM), higher than that of the lead compound and reference drug. This cytotoxic potency is also coupled with a good selectivity index on a nontumoral cell line. Cell cycle analysis of two potent analogues revealed cell death by apoptosis without indication of cell cycle arrest in G0/G1 phase. The structure-activity relationship and in silico absorption, distribution, metabolism, and excretion studies demonstrated that the incorporation of silicon and a carbonyl group at C-4 in the WA framework enhances potency, selectivity, and drug likeness. These findings reveal analogues 22, 23, and 25 as potential candidates for clinical translation in patients with relapsed ovarian cancer.
Collapse
Affiliation(s)
- Nayra R Perestelo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Gabriel G Llanos
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Carolina P Reyes
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Kartheek Sooda
- Department of Pharmacy, School of Applied Science , University of Huddersfield , Queensgate, Huddersfield HD1 3DH , United Kingdom
| | - Saeed Afshinjavid
- College of Arts, Technology and Innovation (ATI) , University of East London , London E16 2RD , United Kingdom
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| | - Farideh Javid
- Department of Pharmacy, School of Applied Science , University of Huddersfield , Queensgate, Huddersfield HD1 3DH , United Kingdom
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica , Universidad de La Laguna , Avenida Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Tenerife , Spain
| |
Collapse
|
24
|
Sudeep HV, Gouthamchandra K, Venkatesh BJ, Prasad KS. Viwithan, a Standardized Withania somnifera Root Extract Induces Apoptosis in Murine Melanoma Cells. Pharmacogn Mag 2018; 13:S801-S806. [PMID: 29491636 PMCID: PMC5822503 DOI: 10.4103/pm.pm_121_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/30/2017] [Indexed: 01/20/2023] Open
Abstract
Background: Withania somnifera is an Indian medicinal herb known for the multipotential ability to cure various therapeutic ailments as described in the ayurvedic system of medicine. Objective: In the present study, we have evaluated the antiproliferative activity of a standardized W. somnifera root extract (Viwithan) against different human and murine cancer cell lines. Materials and Methods: The cytotoxicity of Viwithan was determined using thiazolyl blue tetrazolium blue assay and crystal violet staining. The apoptotic changes in B16F1 cells following treatment with Viwithan were observed by acridine orange/ethidium bromide (AO/EB) staining and DNA fragmentation assay. The binding affinity of withanolides in Viwithan with antiapoptotic proteins B-cell lymphoma 2, B-cell lymphoma-extra large, and myeloid cell leukemia 1 (MCL-1) were studied using in silico approach. Results: The half maximal inhibitory concentration (IC50) values of Viwithan against liver hepatocellular carcinoma, Henrietta Lacks cervical carcinoma cells, human colorectal carcinoma cell line, and Ehrlich ascites carcinoma cells were 1830, 968, 2715, and 633 μg/ml, respectively. Interestingly, Viwithan was highly effective against B16F1 cells with an IC50 value of 220 μg/ml after 24 h treatment. The morphological alterations of apoptotic cell death were clearly observed in the AO/EB-stained cells after treatment with Viwithan. Viwithan induced late apoptotic changes in treated B16F1 cells as evident by the ladder formation of fragmented DNA in a time-dependent manner. The findings of molecular docking showed that withanolides present in Viwithan have a more binding affinity with the antiapoptotic proteins, particularly MCL-1. Conclusion: We have reported for the first time that Viwithan with 5% withanolides has a potent cytotoxic effect, particularly against B16F1 murine melanoma cells among the different cancer cell lines tested. SUMMARY The present study reports for the first time that Viwithan, a standardized 5% Withania somnifera root extract, has potent cytotoxicity against B16F1 murine melanoma cells We have investigated the in vitro cytotoxicity of Viwithan in different human and murine cancer cells. Interestingly, we found that Viwithan was particularly very effective against B16F1 melanoma cells with a half maximal inhibitory concentration value of 220 μg/ml The microscopic observations following acridine orange/ethidium bromide staining and DNA fragmentation assays clearly indicated that Viwithan might initiate late apoptosis in B16F1 cells The binding affinity of withanolides in Viwithan with antiapoptotic proteins of B-cell lymphoma 2 family was predicted using AutoDock tool. The results from in silico studies indicated a plausible synergistic effect of withanolides attributing to the Viwithan-induced apoptosis through suppression of intrinsic pathway for carcinogenesis.
Abbreviations used: MTT: Thiazolyl blue tetrazolium blue; DMSO: Dimethyl sulfoxide; BSA: Bovine serum albumin; DMEM: Dulbecco's minimum essential medium; NCCS: National Centre for Cell Science; PBS: Phosphate-Buffered Saline; HepG2: Liver hepatocellular carcinoma; HeLa: Henrietta Lacks cervical carcinoma cells; HCT-116: Human colorectal carcinoma cell line; EAC: Ehrlich ascites carcinoma cells; IC50: Half maximal inhibitory concentration; AO/EB: Acridine orange/Ethidium bromide; BCL-2: B-cell lymphoma 2; BCL-XL: B-cell lymphoma-extra large; MCL-1: Myeloid cell leukemia 1; PDB: Protein Data Bank; ANOVA: Analysis of variance.
Collapse
Affiliation(s)
- H V Sudeep
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd., Bengaluru, Karnataka, India
| | - K Gouthamchandra
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd., Bengaluru, Karnataka, India
| | - B J Venkatesh
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd., Bengaluru, Karnataka, India
| | - K Shyam Prasad
- Department of Biomedicinal Research, R&D Centre for Excellence, Vidya Herbs Pvt. Ltd., Bengaluru, Karnataka, India
| |
Collapse
|
25
|
Kim G, Kim TH, Hwang EH, Chang KT, Hong JJ, Park JH. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis. Oncol Lett 2017; 14:416-422. [PMID: 28693185 DOI: 10.3892/ol.2017.6169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Human gastric adenocarcinoma (AGS) is one of the most common types of malignant tumor and the third-leading cause of tumor-associated mortality worldwide. Withaferin A (WA), a steroidal lactone derived from Withania somnifera, exhibits antitumor activity in a variety of cancer models. However, to the best of our knowledge, the direct effect of WA on AGS cells has not previously been determined. The present study investigated the effects of WA on the proliferation and metastatic activity of AGS cells. WA exerted a dose-dependent cytotoxic effect on AGS cells. The effect was associated with cell cycle arrest at the G2/M phase and the expression of apoptotic proteins. Additionally, WA treatment resulted in a decrease in the migration and invasion ability of the AGS cells, as demonstrated using a wound healing assay and a Boyden chamber assay. These results indicate that WA directly inhibits the proliferation and metastatic activity of gastric cancer cells, and suggest that WA may be developed as a drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Green Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Eun-Ha Hwang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
26
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|
27
|
Grunz-Borgmann E, Mossine V, Fritsche K, Parrish AR. Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. Altern Ther Health Med 2015; 15:434. [PMID: 26667305 PMCID: PMC4678649 DOI: 10.1186/s12906-015-0958-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/04/2015] [Indexed: 02/08/2023]
Abstract
Background The aging kidney is marked by a chronic inflammation, which may exacerbate the progression of renal dysfunction, as well as increase the susceptibility to acute injury. The identification of strategies to alleviate inflammation may have translational impact to attenuate kidney disease. Methods We tested the potential of ashwaganda, sutherlandia and elderberry on tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induced chemokine (CCL2 and CCL5) expression in vitro. Results Elderberry water-soluble extract (WSE) was pro-inflammatory, while sutherlandia WSE only partially attenuated the TNF-α-induced changes in CCL5. However, ashwaganda WSE completely prevented TNF-α-induced increases in CCL5, while attenuating the increase in CCL2 expression and NF-κB activation. The same pattern of ashwagandha protection was seen using LPS as the pro-inflammatory stimuli. Conclusions Taken together, these results demonstrate the ashwaganda WSE as a valid candidate for evaluation of therapeutic potential for the treatment of chronic renal dysfunction.
Collapse
|
28
|
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72:4445-60. [PMID: 26306935 PMCID: PMC11113996 DOI: 10.1007/s00018-015-2012-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Withania somnifera, also called 'Indian ginseng', is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.
Collapse
Affiliation(s)
- Nawab John Dar
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Muzamil Ahmad
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India.
| |
Collapse
|
29
|
Srivastava AN, Ahmad R, Khan MA. Evaluation and Comparison of the In Vitro Cytotoxic Activity of Withania somnifera Methanolic and Ethanolic Extracts against MDA-MB-231 and Vero Cell Lines. Sci Pharm 2015; 84:41-59. [PMID: 27110497 PMCID: PMC4839554 DOI: 10.3797/scipharm.1507-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/26/2015] [Indexed: 01/01/2023] Open
Abstract
Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies.
Collapse
Affiliation(s)
- A N Srivastava
- Dept. of Pathology, Era's Lucknow Medical College & Hospital, Sarfarazganj, Hardoi Road, Lucknow-226003, India
| | - Rumana Ahmad
- Dept. of Pathology, Era's Lucknow Medical College & Hospital, Sarfarazganj, Hardoi Road, Lucknow-226003, India
| | - Mohsin Ali Khan
- Chairman Research, Era's Lucknow Medical College & Hospital, Sarfarazganj, Hardoi Road, Lucknow-226003, India
| |
Collapse
|
30
|
Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells. PLoS One 2015; 10:e0137498. [PMID: 26334881 PMCID: PMC4559428 DOI: 10.1371/journal.pone.0137498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/18/2015] [Indexed: 11/21/2022] Open
Abstract
In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells.
Collapse
|
31
|
Nishikawa Y, Okuzaki D, Fukushima K, Mukai S, Ohno S, Ozaki Y, Yabuta N, Nojima H. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells. PLoS One 2015; 10:e0134137. [PMID: 26230090 PMCID: PMC4521694 DOI: 10.1371/journal.pone.0134137] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.
Collapse
Affiliation(s)
- Yukihiro Nishikawa
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Satomi Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Shouichi Ohno
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Yuki Ozaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3–1 Yamadaoka, Suita City, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
32
|
Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 2015; 357:219-230. [DOI: 10.1016/j.canlet.2014.11.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
|
33
|
Gao R, Shah N, Lee JS, Katiyar SP, Li L, Oh E, Sundar D, Yun CO, Wadhwa R, Kaul SC. Withanone-Rich Combination of Ashwagandha Withanolides Restricts Metastasis and Angiogenesis through hnRNP-K. Mol Cancer Ther 2014; 13:2930-40. [DOI: 10.1158/1535-7163.mct-14-0324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Hahm ER, Singh SV. Autophagy fails to alter withaferin A-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets 2014; 13:640-50. [PMID: 23607597 DOI: 10.2174/15680096113139990039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 01/12/2023]
Abstract
We have shown previously that withaferin A (WA), which is a highly promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits viability of cultured breast cancer cells in association with reactive oxygen species (ROS)-dependent apoptosis induction. Because ROS production is implicated in induction of autophagy, which is an evolutionary conserved process for bulk degradation of cellular components including organelles (e.g., mitochondria) and considered a valid cancer chemotherapeutic target, we questioned whether WA treatment resulted in autophagy induction. Indeed exposure of MDA-MB-231 and MCF-7 human breast cancer cells as well as a spontaneously immortalized and non-tumorigenic normal human mammary epithelial cell line (MCF-10A) to pharmacologic concentration of WA resulted in autophagy as evidenced by transmission electron microscopy, processing of microtubuleassociated protein 1 light chain 3 isoform B, and/or acridine orange staining. Inhibition of MDA-MB-231 xenograft growth in vivo by WA administration was also associated with a significant increase in level of LC3 protein in the tumor. However, WA-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was not compromised either by pharmacological suppression of autophagy using 3-methyl adenine or genetic repression of autophagy by RNA interference of Atg5, a critical component of the autophagic machinery. Finally, Beclin1 was dispensable for WA-mediated autophagy as well as inhibition of MDA-MB-231 cell viability. Based on these observations we conclude that autophagy induction fails to have any meaningful impact on WA-mediated lethality in breast cancer cells, which may be a therapeutic advantage because autophagy serves to protect against apoptosis by several anticancer agents.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- 2.32A Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
35
|
Kim JH, Kim SJ. Overexpression of MicroRNA-25 by Withaferin A Induces Cyclooxygenase-2 Expression in Rabbit Articular Chondrocytes. J Pharmacol Sci 2014; 125:83-90. [DOI: 10.1254/jphs.13232fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
36
|
Secondary Metabolites of Traditional Medical Plants: A Case Study of Ashwagandha (Withania somnifera). PLANT CELL MONOGRAPHS 2014. [DOI: 10.1007/978-3-642-41787-0_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes. Exp Cell Res 2013; 319:2822-34. [DOI: 10.1016/j.yexcr.2013.08.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 02/04/2023]
|
38
|
Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action. PLoS One 2013; 8:e77189. [PMID: 24130852 PMCID: PMC3795014 DOI: 10.1371/journal.pone.0077189] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a leading cause of death accounting for 15-20% of global mortality. Although advancements in diagnostic and therapeutic technologies have improved cancer survival statistics, 75% of the world population live in underdeveloped regions and have poor access to the advanced medical remedies. Natural therapies hence become an alternative choice of treatment. Ashwagandha, a tropical herb used in Indian Ayurvedic medicine, has a long history of its health promoting and therapeutic effects. In the present study, we have investigated an anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX). Methodology/Principal Findings Anticancer activity in the water extract of Ashwagandha leaves (ASH-WEX) was detected by invitro and invivo assays. Bioactivity-based size fractionation and NMR analysis were performed to identify the active anticancer component(s). Mechanism of anticancer activity in the extract and its purified component was investigated by biochemical assays. We report that the ASH-WEX is cytotoxic to cancer cells selectively, and causes tumor suppression invivo. Its active anticancer component was identified as triethylene glycol (TEG). Molecular analysis revealed activation of tumor suppressor proteins p53 and pRB by ASH-WEX and TEG in cancer cells. In contrast to the hypophosphorylation of pRB, decrease in cyclin B1 and increase in cyclin D1 in ASH-WEX and TEG-treated cancer cells (undergoing growth arrest), normal cells showed increase in pRB phosphorylation and cyclin B1, and decrease in cyclin D1 (signifying their cell cycle progression). We also found that the MMP-3 and MMP-9 that regulate metastasis were down regulated in ASH-WEX and TEG-treated cancer cells; normal cells remained unaffected. Conclusion We provide the first molecular evidence that the ASH-WEX and TEG have selective cancer cell growth arrest activity and hence may offer natural and economic resources for anticancer medicine.
Collapse
|
39
|
Vyas AR, Singh SV. Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS JOURNAL 2013; 16:1-10. [PMID: 24046237 DOI: 10.1208/s12248-013-9531-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
The plants used in Ayurvedic medicine, which has been practiced in India for thousands of years for the treatment of a variety of disorders, are rich in chemicals potentially useful for prevention and treatment of cancer. Withania somnifera (commonly known as Ashwagandha in Ayurvedic medicine) is one such medicinal plant whose anticancer value was realized over four decades ago after isolation of a crystalline steroidal compound (withaferin A) from the leaves of this shrub. The root and leaf extracts of W. somnifera are shown to confer protection against chemically-induced cancers in experimental rodents, and retard tumor xenograft growth in athymic mice. Anticancer effect of W. somnifera is generally attributable to steroidal lactones collectively referred to as withanolides. Withaferin A (WA) appears most active against cancer among structurally divergent withanolides isolated from the root or leaf of W. somnifera. Cancer-protective role for WA has now been established using chemically-induced and oncogene-driven rodent cancer models. This review summarizes the key in vivo preclinical studies demonstrating anticancer effects of WA. Molecular targets and mechanisms likely contributing to the anticancer effects of WA are also discussed. Finally, challenges in clinical development of WA for the prevention and treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Avani R Vyas
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
40
|
Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60154-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Anisomycin treatment enhances TRAIL-mediated apoptosis in renal carcinoma cells through the down-regulation of Bcl-2, c-FLIP(L) and Mcl-1. Biochimie 2012; 95:858-65. [PMID: 23261849 DOI: 10.1016/j.biochi.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 12/03/2012] [Indexed: 11/24/2022]
Abstract
Anisomycin is known to inhibit protein synthesis and induce ribotoxic stress. In this study, we investigated whether anisomycin treatment could modulate TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that anisomycin treatment (10-15 nM) alone had no effect on the level of apoptosis, but a combination treatment of anisomycin and TRAIL significantly increased the level of apoptosis in human renal carcinoma (Caki, ACHN and A498), human glioma (U251MG), and human breast carcinoma (MDA-MB-361 and MCF7) cells. Anisomycin treatment led to the down-regulation of Bcl-2 expression at the transcriptional level, and the over-expression of Bcl-2 inhibited the apoptosis induced by the combination treatment of anisomycin and TRAIL. Furthermore, anisomycin treatment resulted in the down-regulation of c-FLIP(L) and Mcl-1 at the post-transcriptional level, and the over-expression of c-FLIP(L) and Mcl-1 blocked the induction of apoptosis caused by the combination treatment of anisomycin with TRAIL. In contrast, anisomycin treatment had no effect on the levels of TRAIL-mediated apoptosis in mouse kidney cells (TMCK-1) or normal human skin fibroblasts (HSF). Cumulatively, our study demonstrates that anisomycin treatment enhances TRAIL-mediated apoptosis through the down-regulation of Bcl-2, c-FLIP(L) and Mcl-1 at the transcriptional or post-transcriptional level.
Collapse
|
42
|
Jilani K, Lupescu A, Zbidah M, Shaik N, Lang F. Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes. Toxicol In Vitro 2012; 27:52-8. [PMID: 22989414 DOI: 10.1016/j.tiv.2012.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
Withaferin A, a triterpenoid component from Withania somnifera, counteracts malignancy, an effect attributed to stimulation of apoptosis. Withaferin A is partially effective through induction of oxidative stress, altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter apoptosis-like eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity [Ca(2+)](i) following activation of oxidant-sensitive Ca(2+)-permeable cation channels, ceramide formation and/or ATP-depletion. The present study explored, whether withaferin A triggers eryptosis. To this end, [Ca(2+)](i) was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, hemolysis from hemoglobin release, oxidative stress from DCFDA-fluorescence and ceramide abundance utilizing antibodies. A 48 h exposure to withaferin A significantly decreased forward scatter (at ≥ 10 μM withaferin concentration) and increased [Ca(2+)](i) (≥ 5 μM), ROS-formation (≥ 10 μM) ceramide-formation ( ≥ 10 μM) as well as annexin-V-binding ( ≥ 5 μM). Withaferin A treatment was followed by slight but significant increase of hemolysis. Extracellular Ca(2+) removal, amiloride, and the antioxidant N-acetyl-l-cysteine significantly blunted withaferin A-triggered annexin-V-binding. The present observations reveal that withaferin A triggers suicidal erythrocyte death despite the absence of gene expression and key elements of apoptosis such as mitochondria.
Collapse
Affiliation(s)
- Kashif Jilani
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
43
|
Hahm ER, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett 2012; 334:101-8. [PMID: 22935676 DOI: 10.1016/j.canlet.2012.08.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/04/2023]
Abstract
The present study provides novel insight into the mechanism of apoptosis induction by withaferin A (WA), which is a bioactive constituent of an Ayurvedic medicine plant (Withania somnifera). Exposure of MDA-MB-231 and MCF-7 human breast cancer cells to WA resulted in suppression of XIAP, cIAP-2, and Survivin protein levels. The WA-induced apoptosis was significantly attenuated by ectopic expression of XIAP, Survivin, and cIAP-2 in both cells. However, the WA-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with suppression of Survivin protein level only. These results indicate important contribution of Survivin suppression in WA-induced apoptosis.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One 2012; 7:e42265. [PMID: 22860102 PMCID: PMC3408484 DOI: 10.1371/journal.pone.0042265] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/02/2012] [Indexed: 12/27/2022] Open
Abstract
Application of doxorubicin (Dox) for the treatment of cancer is restricted due to its severe side effects. We used combination strategy by combining doxorubicin (Dox) with withaferin A (WFA) to minimize the ill effects of Dox. Treatment of various epithelial ovarian cancer cell lines (A2780, A2780/CP70 and CaOV3) with combination of WFA and Dox (WFA/DOX) showed a time- and dose-dependent synergistic effect on inhibition of cell proliferation and induction of cell death, thus reducing the dosage requirement of Dox. Combination treatment resulted in a significant enhancement of ROS production resulting in immense DNA damage, induction of autophagy analyzed by transmission electron microscope and increase in expression of autophagy marker LC3B, and culminated in cell death analyzed by cleaved caspase 3. We validated combination therapy on tumor growth using an in vitro 3Dimension (3D) tumor model and the more classic in vivo xenograft model of ovarian cancer. Both tumor models showed a 70 to 80% reduction in tumor growth compared to control or animals treated with WFA or Dox alone. Immunohistochemical analysis of the tumor tissues from animals treated with WFA/Dox combination showed a significant reduction in cell proliferation and formation of microvessels accompanied by increased in LC3B level, cleaved caspase 3, and DNA damage. Taken together, our data suggest that combining WFA with Dox decreases the dosage requirement of Dox, therefore, minimizing/eliminating the severe side effects associated with high doses of DOX, suggesting the application of this combination strategy for the treatment of ovarian and other cancers with no or minimum side effects.
Collapse
Affiliation(s)
- Miranda Y. Fong
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America
| | - Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Madhavi Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Raj K. Singh
- Vivo Biosciences Inc., Birmingham, Alabama, United States of America
| | - Ramesh Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Sham S. Kakar
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
45
|
Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 2012; 16:1295-322. [PMID: 22117137 PMCID: PMC3324815 DOI: 10.1089/ars.2011.4414] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. RECENT ADVANCES ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. CRITICAL ISSUES These statements suggest both "upside" (cancer-suppressing) and "downside" (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. FUTURE DIRECTIONS the various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
46
|
Efferth T, Greten HJ. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides. MICROARRAYS 2012; 1:44-63. [PMID: 27605335 PMCID: PMC5007710 DOI: 10.3390/microarrays1010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 12/03/2022]
Abstract
Withania somnifera (L.) Dunal (Indian ginseng, winter cherry, Solanaceae) is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts). The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin) and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin) was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Henry Johannes Greten
- Heidelberg School of Chinese Medicine, Karlsruher Straße 12, Heidelberg 69126, Germany.
- Biomedical Sciences Institute Abel Salazar, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
47
|
Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS, Khan S, Vishwakarma RA. Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 2012; 499:25-36. [PMID: 22425978 DOI: 10.1016/j.gene.2012.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/04/2012] [Indexed: 02/02/2023]
Abstract
Withania somnifera (ashwagandha) is a rich repository of large number of pharmacologically active secondary metabolites known as withanolides. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, but there is sparse information about the genes responsible for biosynthesis of these compounds. In this study, we have cloned and characterized a gene encoding squalene synthase (EC 2.5.1.21) from a withaferin A rich variety of W. somnifera, a key enzyme in the biosynthesis of isoprenoids. Squalene synthase catalyses dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for sterols and triterpenes. A full-length cDNA consisting of 1765 bp was isolated and contained a 1236 bp open reading frame (ORF) encoding a polypeptide of 411 amino acids. Recombinant C-terminus truncated squalene synthase (WsSQS) was expressed in BL21 cells (Escherichia coli) with optimum expression induced with 1mM IPTG at 37°C after 1h. Quantitative RT-PCR analysis showed that squalene synthase (WsSQS) expressed in all tested tissues including roots, stem and leaves with the highest level of expression in leaves. The promoter region of WsSQS isolated by genome walking presented several cis-acting elements in the promoter region. Biosynthesis of withanolides was up-regulated by different signalling components including methyl-jasmonate, salicylic acid and 2, 4-D, which was consistent with the predicted results of WsSQS promoter region. This work is the first report of cloning and expression of squalene synthase from W. somnifera and will be useful to understand the regulatory role of squalene synthase in the biosynthesis of withanolides.
Collapse
Affiliation(s)
- Wajid Waheed Bhat
- Plant Biotechnology, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi-180001, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hazra B, Ghosh S, Kumar A, Pandey BN. The prospective role of plant products in radiotherapy of cancer: a current overview. Front Pharmacol 2012; 2:94. [PMID: 22291649 PMCID: PMC3253585 DOI: 10.3389/fphar.2011.00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/22/2011] [Indexed: 01/06/2023] Open
Abstract
Treatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Efforts are going on to find chemical compounds which would effectively offer protection to the normal tissues after radiation exposure during radiotherapy of cancer. In this regard, plant-derived compounds might serve as “leads” to design ideal radioprotectors/radiosensitizers. This article reviews some of the recent findings on prospective medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent discussion has been presented on the molecular mechanism of apoptotic death in relation to the oxidative stress in cancer cells induced by some of these plant samples and their active constituents.
Collapse
Affiliation(s)
- Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University Kolkata, India.
| | | | | | | |
Collapse
|