1
|
Amiruddin Hashmi M, Kausar T, Alam Khan M, Younus H. Assessing the inhibition of glycation of ζ-crystallin by thymoquinone: A mechanistic approach using experimental and computational methods. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Hashmi MA, Malik A, Arsalan A, Khan MA, Younus H. Elucidation of kinetic and structural properties of eye lens ζ-crystallin: an in vitro and in silico approach. J Biomol Struct Dyn 2023; 41:1178-1192. [PMID: 34927573 DOI: 10.1080/07391102.2021.2017351] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Arabian Camelus dromedarius contains significant concentration of eye lens ζ-crystallin. This enzyme is also present in other life forms including humans, however in lower catalytic amounts. The recombinant camel ζ-crystallin was expressed in the E. coli BL21 (DE3) pLysS strain and purified using HisTrap column. The Km of the enzyme for 9,10-phenanthrenequinone (9,10-PQ) substrate and NADPH cofactor was determined to be 11.66 and 50.93 µM, respectively. The Vmax for 9,10-PQ and NADPH was obtained as 23.19 and 19.98 μM min-1, respectively. The optimum activity of the purified enzyme was found to be at pH 6.0 and at 55 °C. Different physico-chemical parameters were analysed including instability index (II), aliphatic index (AI) and the GRAVY index to establish proper characterization. The sequence of the recombinant ζ-crystallin was subjected to homology modelling using SWISS-MODEL webserver followed by validation of the modelled target structure. The evaluation of the modelled ζ-crystallin was performed by several parameters including Ramachandran plot, Z-score values followed by molecular dynamics (MD) simulation. The cumulative analysis of the physico-chemical, quantitative, qualitative and the essential dynamics of simulation of ζ-crystallin and its complexes with 9,10-PQ and NADPH helped in verifying the acceptable quality and stability of the ζ-crystallin structure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Amiruddin Hashmi
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Arsalan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Yang C, Huang Z, Zhang X, Zhu C. Structural Insights into the NAD(P)H:Quinone Oxidoreductase from Phytophthora capsici. ACS OMEGA 2022; 7:25705-25714. [PMID: 35910145 PMCID: PMC9330140 DOI: 10.1021/acsomega.2c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Soluble quinone oxidoreductases catalyze transfer of electrons from NADPH to quinones. Transfer of electrons is essential for detoxification of synthetic compounds. Here, we present the crystal structure of a NADPH-dependent QOR from Phytophthora capsici (Pc) complexed with NADPH at 2.4 Å resolution. The enzyme exhibits a bi-modular architecture, containing a NADPH-binding groove and a substrate-binding pocket in each subunit. In the crystal, each asymmetric unit of PcQOR contains two molecules stabilized by intermolecular interactions. Gel filtration and ultracentrifugation analyses reveal that it functions as a tetramer in solution. Alignment of homologous structures exhibits a conserved topology. However, the active sites vary among the homologues, indicating differences in substrate specificities. Enzymatic assays indicate that PcQOR tends to catalyze the large substrates, like 9,10-phenanthrenequinone. Computational simulation associated with site-directed mutagenesis and enzymatic activity analysis declares a potential quinone-binding channel. The ability to reduce quinones probably helps P. capsici to detoxify some harmful chemicals encountered during invasion.
Collapse
Affiliation(s)
- Cancan Yang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Taian 271018, China
| | - Zhenling Huang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Taian 271018, China
| | - Xiuguo Zhang
- Shandong
Provincial Key Laboratory for Biology of Vegetable Diseases and Insect
Pests, College of Plant Protection, Shandong
Agricultural University, Taian 271018, China
| | - Chunyuan Zhu
- College
of Life Sciences, Shandong Agricultural
University, Taian 271018, China
| |
Collapse
|
4
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 44:559-573. [PMID: 33215716 DOI: 10.1111/pce.13956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/11/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. J Biosci Bioeng 2020; 131:39-46. [PMID: 32967812 DOI: 10.1016/j.jbiosc.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022]
Abstract
Aldehydes are the main inhibitors generated during the pretreatment of lignocellulosic biomass, which can inhibit cell growth and disturb subsequent fermentation. Saccharomyces cerevisiae has the intrinsic ability to in situ detoxify aldehydes to their less toxic or nontoxic alcohols by numerous aldehyde dehydrogenases/reductases during the lag phase. Herein, we report that an uncharacterized open reading frame YMR152W from S. cerevisiae encodes a novel aldehyde reductase with catalytic functions for reduction of at least six aldehydes, including two furan aldehydes (furfural and 5-hydroxymethylfurfural), three aliphatic aldehydes (acetaldehyde, glycolaldehyde, and 3-methylbutanal), and an aromatic aldehyde (benzaldehyde) with NADH or NADPH as the co-factor. Particularly, Ymr152wp displayed the highest specific activity (190.86 U/mg), and the best catalytic rate constant (Kcat), catalytic efficiency (Kcat/Km), and affinity (Km) when acetaldehyde was used as the substrate with NADH as the co-factor. The optimum pH of Ymr152wp is acidic (pH 5.0-6.0), but this enzyme is more stable in alkaline conditions (pH 8.0). Metal ions, chemical protective additives, salts, and substrates could stimulate or inhibit enzyme activities of Ymr152wp in varying degrees. Ymr152wp was classified into the quinone oxidoreductase (QOR) subfamily of the medium-chain dehydrogenase/reductase (MDR) family based on the results of amino acid sequence analysis and phylogenetic analysis. Although Ymr152wp was grouped into the QOR family, no quinone reductase activity was observed using typical quinones (9,10-phenanthrenequinone, 1,2-naphthoquinone, and p-benzoquinone) as the substrates. This study provides guidelines for exploring more uncharacterized aldehyde reductases in S. cerevisiae for in situ detoxification of aldehyde inhibitors derived from lignocellulosic hydrolysis.
Collapse
|
6
|
Abdullah EM, Haq SH, Ahmed MA, Khan JM, Alamery SF, Malik A. Structural stability and solubility of glycated camel lens ζ-crystallin. Int J Biol Macromol 2020; 158:384-393. [PMID: 32380106 DOI: 10.1016/j.ijbiomac.2020.04.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
The camel has several biochemical, physiological, and anatomical features to withstand the harsh desert climate. Camel eye lens contains a novel protein (ζ-crystallin) in bulk quantity. Previous reports suggest that non-enzymatic glycation of eye lens proteins plays an important role in the etiology of cataract. In this study, we have characterized the role of glucose, fructose, and methylglyoxal (MGO) in the glycation of camel lens ζ-crystallin. From the results obtained, it was found that MGO reacted rapidly, fructose reacted moderately, and glucose was the least reactive even after prolonged incubation (>100 days). Glycation with MGO and fructose led to changes in the structure of ζ-crystallin, while glucose had no remarkable effect. The surface hydrophobicity did not change and no aggregates or amyloid fibrils were observed in the glycated ζ-crystallin. Moreover, the secondary structure of glycated ζ-crystallin remained similar after glycation. Our results suggested that due to natural adaptation, the camel lens protein ζ-crystallin retained its structure and solubility even after glycation to perform the single known function of the lens proteins: to focus unscattered light on the retina.
Collapse
Affiliation(s)
- Ejlal Mohamed Abdullah
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Asif Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Salman Freeh Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Meyer F, Netzer J, Meinert C, Voigt B, Riedel K, Steinbüchel A. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 2018; 102:6119-6142. [DOI: 10.1007/s00253-018-9061-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
|
8
|
Mas y mas S, Curien G, Giustini C, Rolland N, Ferrer JL, Cobessi D. Crystal Structure of the Chloroplastic Oxoene Reductase ceQORH from Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:329. [PMID: 28337214 PMCID: PMC5343027 DOI: 10.3389/fpls.2017.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/24/2017] [Indexed: 05/17/2023]
Abstract
Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to accumulation of aldehydes, ketones, and α,β-unsaturated carbonyls of various lengths, known as oxylipins. Oxylipins with α,β-unsaturated carbonyls are reactive electrophile species and are toxic. Cells have evolved several mechanisms to scavenge reactive electrophile oxylipins and decrease their reactivity such as by coupling with glutathione, or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously shown to reduce the reactive double bond of γ-ketols. In marked difference with its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase. Positioning of the α,β-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE, far away from the NADP+ nicotinamide ring, provides a rational for the absence of activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution whereas other enzymes from the quinone oxidoreductase family are stable dimers and a structural explanation of this difference is proposed. A possible in vivo role of ketodienes and ketotrienes binding to ceQORH is also discussed.
Collapse
Affiliation(s)
- Sarah Mas y mas
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Cécile Giustini
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Jean-Luc Ferrer
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - David Cobessi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
- *Correspondence: David Cobessi
| |
Collapse
|
9
|
Zheng Q, Song Y, Zhang W, Shaw N, Zhou W, Rao Z. Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor. FEBS J 2015; 282:2697-707. [PMID: 25924579 DOI: 10.1111/febs.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Energy generation, synthesis of biomass and detoxification of synthetic compounds are driven by electron transfer in all living organisms. Soluble quinone oxidoreductases (QORs) catalyze transfer of electrons from NADPH to substrates. The open reading frame Rv1454c of Mycobacterium tuberculosis (Mtb) encodes a NADPH-dependent QOR that is known to catalyze one-electron reduction of quinones to produce semiquinones. Here, we report the crystal structures of the apo-enzyme of MtbQOR and its binary complex with NADPH determined at 1.80 and 1.85 Å resolutions, respectively. The enzyme is bi-modular. Domain I binds the substrate, while domain II folds into a typical Rossmann fold for tethering NADPH. Binding of NADPH induces conformational changes. Among the known structures of QORs, MtbQOR exhibits the largest conformational change. Movement of Phe41 to stack against Ala244 results in partial closure of the active site. Comparison of the structure with homologs suggests a conserved topology. However, differences are observed in the region around the site of hydride transfer, highlighting differences in substrate specificities amongst the homologs. Unliganded as well as NADPH-bound MtbQOR crystallized as a dimer. Dimerization is mediated by homotypic intermolecular interactions involving main chain Cα as well as side-chain atoms of residues. The results of analytical ultracentrifugation analysis revealed that MtbQOR exists as a dimer in solution. Enzymatic assays indicate that MtbQOR prefers 9,10-phenanthrenequinone over 1,4-benzoquinone as a substrate. The ability to reduce quinones probably assists Mtb in detoxification of a range of harmful chemicals encountered in the host during invasion. DATABASE The coordinates and structure factors for apo- and NADPH-bound MtbQOR have been deposited in the Protein Data Bank under accession codes 4RVS and 4RVU, respectively.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yunlong Song
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Neil Shaw
- College of Life Sciences, Nankai University, Tianjin, China.,National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, China.,National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China.,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Crosas E, Sumoy L, González E, Díaz M, Bartolomé S, Farrés J, Parés X, Biosca JA, Fernández MR. The yeast ζ-crystallin/NADPH:quinone oxidoreductase (Zta1p) is under nutritional control by the target of rapamycin pathway and is involved in the regulation of argininosuccinate lyase mRNA half-life. FEBS J 2015; 282:1953-64. [PMID: 25715111 DOI: 10.1111/febs.13246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
The yeast ζ-crystallin (Zta1p) is a quinone oxidoreductase belonging to the ζ-crystallin family, with activity in the reduction of alkenal/alkenone compounds. Various biological functions have been ascribed to the members of this protein family, such as their ability to interact specifically with AU-rich sequences in mRNA, and thus they have been proposed to act as AU-rich element-binding proteins (AREBPs). In this study, we evaluated the specificity of Zta1p for RNA versus DNA by means of a novel nonisotopic method for the in vitro quantitative detection of protein · RNA complexes. Through comparative transcriptomic analysis, we found that the lack of Zta1p negatively affects the expression of a group of genes involved in amino acid biosynthesis, the argininosuccinate lyase (ARG4) gene being one of them. Here, we propose that Zta1p participates in the post-transcriptional regulation of ARG4 expression by increasing the ARG4 mRNA half-life. In addition, expression of the ζ-crystallin gene (ZTA1) is itself regulated by nutrient availability through the general amino acid control and target of rapamycin pathways. Our results shed new light on the ζ-crystallin family members from yeast to humans as stress response proteins with a bifunctional role in the detoxification of alkenal and alkenone compounds, and the regulation of gene expression.
Collapse
Affiliation(s)
- Eva Crosas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain.,ALBA Synchrotron Light Source, NCD Beamline - Experiments Division, Barcelona, Spain
| | - Lauro Sumoy
- Microarray Unit, Genomics Core Facility, Center for Genomic Regulation (CRG) - Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut de Medicina Predictiva i Personalitzada del Càncer, IGTP, Campus Can Ruti, Badalona, Barcelona, Spain
| | - Eva González
- Microarray Unit, Genomics Core Facility, Center for Genomic Regulation (CRG) - Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maykelis Díaz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Salvador Bartolomé
- Laboratory of Luminescence and Spectroscopy of Biomolecules (LLEB), Universitat Autònoma de Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Josep Antoni Biosca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | | |
Collapse
|
11
|
Zhao X, Tang J, Wang X, Yang R, Zhang X, Gu Y, Li X, Ma M. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass. Yeast 2015; 32:409-22. [PMID: 25656244 DOI: 10.1002/yea.3068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/28/2014] [Accepted: 01/28/2015] [Indexed: 02/03/2023] Open
Abstract
Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.
Collapse
Affiliation(s)
- Xianxian Zhao
- Institute of Ecological and Environmental Sciences, College of Resources and Environmental Sciences, Sichuan Agricultural University, Wenjiang, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo PC, Ma XX, Bao ZZ, Ma JD, Chen Y, Zhou CZ. Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1. J Struct Biol 2011; 176:112-8. [PMID: 21820057 DOI: 10.1016/j.jsb.2011.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
Quinone oxidoreductase (QOR EC1.6.5.5) catalyzes the reduction of quinone to hydroxyquinone using NADPH as a cofactor. Here we present the crystal structure of the ζ-crystallin-like QOR Zta1 from Saccharomycescerevisiae in apo-form at 2.00 Å and complexed with NADPH at 1.59 Å resolution. Zta1 forms a homodimer, with each subunit containing a catalytic and a cofactor-binding domain. Upon NADPH binding to the interdomain cleft, the two domains shift towards each other, producing a better fit for NADPH, and tightening substrate binding. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis defined a potential quinone-binding site that determines the stringent substrate specificity. Moreover, multiple-sequence alignment and kinetics assays implied that a single-residue change from Arg in lower organisms to Gly in vertebrates possibly resulted in elevation of enzymatic activity of ζ-crystallin-like QORs throughout evolution.
Collapse
Affiliation(s)
- Peng-Chao Guo
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230027, People's Republic of China
| | | | | | | | | | | |
Collapse
|