1
|
Comparative transcriptome analysis unveils the adaptative mechanisms of Scedosporium apiospermum to the microenvironment encountered in the lungs of patients with cystic fibrosis. Comput Struct Biotechnol J 2020; 18:3468-3483. [PMID: 33294141 PMCID: PMC7691682 DOI: 10.1016/j.csbj.2020.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
Scedosporium species rank second among the filamentous fungi colonizing the lungs of patients with cystic fibrosis (CF). Apart from the context of immunodeficiency (lung transplantation), the colonization of the CF airways by these fungi usually remains asymptomatic. Why the colonization of the lower airways by Scedosporium species is fairly tolerated by CF patients while these fungi are able to induce a marked inflammatory reaction in other clinical contexts remains questionable. In this regards, we were interested here in exploring the transcriptional reprogramming that accompanies the adaptation of these fungi to the particular microenvironment encountered in the airways of CF patients. Cultivation of Scedosporium apiospermum in conditions mimicking the microenvironment in the CF lungs was shown to induce marked transcriptional changes. This includes notably the down-regulation of enzymes involved in the synthesis of some major components of the plasma membrane which may reflect the ability of the fungus to evade the host immune response by lowering the biosynthesis of some major antigenic determinants or inhibiting their targeting to the cell surface through alterations of the membrane fluidity. In addition, this analysis revealed that some genes encoding enzymes involved in the biosynthesis of some mycotoxins were down-regulated suggesting that, during the colonization process, S. apiospermum reduces the production of some toxic secondary metabolites to prevent exacerbation of the immune system response. Finally, a strong up-regulation of many genes encoding enzymes involved in the degradation of aromatic compounds was observed, suggesting that these catabolic properties would predispose the fungus to particular patterns of human pathogenicity. Together these data provide new insights into the adaptative mechanisms developed by S. apiospermum in the CF lungs, which should be considered for identification of potential targets for drug development, but also for the experimental conditions to be used in in vitro susceptibility testing of clinical isolates to current antifungals.
Collapse
|
2
|
Copmans D, Kildgaard S, Rasmussen SA, Ślęzak M, Dirkx N, Partoens M, Esguerra CV, Crawford AD, Larsen TO, de Witte PAM. Zebrafish-Based Discovery of Antiseizure Compounds from the North Sea: Isoquinoline Alkaloids TMC-120A and TMC-120B. Mar Drugs 2019; 17:md17110607. [PMID: 31731399 PMCID: PMC6891649 DOI: 10.3390/md17110607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
There is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively. Here we report the identification of the two known isoquinoline alkaloids TMC-120A and TMC-120B as novel antiseizure compounds, which were isolated by bioactivity-guided purification from the marine-derived fungus Aspergillus insuetus. TMC-120A and TMC-120B were observed to significantly lower PTZ-induced seizures and epileptiform brain activity in the larval zebrafish PTZ seizure model. In addition, their structural analogues TMC-120C, penicisochroman G, and ustusorane B were isolated and also significantly lowered PTZ-induced seizures. Finally, TMC-120A and TMC-120B were investigated in a mouse model of drug-resistant focal seizures. Compound treatment significantly shortened the seizure duration, thereby confirming their antiseizure activity. These data underscore the possibility to translate findings in zebrafish to mice in the field of epilepsy and the potential of the marine environment for ASD discovery.
Collapse
Affiliation(s)
- Daniëlle Copmans
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Sara Kildgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
| | - Silas A. Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
| | - Monika Ślęzak
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Nina Dirkx
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Current affiliation: Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Alexander D. Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Current affiliation: Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; (S.K.); (S.A.R.)
- Correspondence: (T.O.L.); (P.A.M.-d.W.); Tel.: +45-4525-2632 (T.O.L.); +32-16-32-34-32 (P.A.M.-d.W.)
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 box 824, 3000 Leuven, Belgium; (D.C.); (M.Ś.); (N.D.); (M.P.); (C.V.E.); (A.D.C.)
- Correspondence: (T.O.L.); (P.A.M.-d.W.); Tel.: +45-4525-2632 (T.O.L.); +32-16-32-34-32 (P.A.M.-d.W.)
| |
Collapse
|
3
|
Vargas DF, Larghi EL, Kaufman TS. The 6π-azaelectrocyclization of azatrienes. Synthetic applications in natural products, bioactive heterocycles, and related fields. Nat Prod Rep 2019; 36:354-401. [PMID: 30090891 DOI: 10.1039/c8np00014j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2006 to 2018 The application of the 6π-azaelectrocyclization of azatrienes as a key strategy for the synthesis of natural products, their analogs and related bioactive or biomedically-relevant compounds (from 2006 to date) is comprehensively reviewed. Details about reaction optimization studies, relevant reaction mechanisms and conditions are also discussed.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
4
|
McMullin DR, Renaud JB, Barasubiye T, Sumarah MW, Miller JD. Metabolites of Trichoderma species isolated from damp building materials. Can J Microbiol 2017; 63:621-632. [DOI: 10.1139/cjm-2017-0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Buildings that have been flooded often have high concentrations of Trichoderma spores in the air while drying. Inhaled spores and spore and mycelial fragments contain large amounts of fungal glucan and natural products that contribute to the symptoms associated with indoor mould exposures. In this study, we considered both small molecules and peptaibol profiles of T. atroviride, T. koningiopsis, T. citrinoviride, and T. harzianum strains obtained from damp buildings in eastern Canada. Twenty-residue peptaibols and sorbicillin-derived metabolites (1–6) including a new structure, (R)-vertinolide (1), were characterized from T. citrinoviride. Trichoderma koningiopsis produced several koninginins (7–10), trikoningin KA V, and the 11-residue lipopeptaibols trikoningin KB I and trikoningin KB II. Trichoderma atroviride biosynthesized a mixture of 19-residue trichorzianine-like peptaibols, whereas T. harzianum produced 18-residue trichokindin-like peptaibols and the 11-residue harzianin HB I that was subsequently identified from the studied T. citrinoviride strain. Two α-pyrones, 6-pentyl-pyran-2-one (11) and an oxidized analog (12), were produced by both T. atroviride and T. harzianum. Aside from exposure to low molecular weight natural products, inhalation of Trichoderma spores and mycelial fragments may result in exposure to membrane-disrupting peptaibols. This investigation contributes to a more comprehensive understanding of the biologically active natural products produced by fungi commonly found in damp buildings.
Collapse
Affiliation(s)
- David R. McMullin
- Ottawa Carleton Institute of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Justin B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tharcisse Barasubiye
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Mark W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - J. David Miller
- Ottawa Carleton Institute of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
5
|
Rand TG, Chang CT, McMullin DR, Miller JD. Inflammation-associated gene expression in RAW 264.7 macrophages induced by toxins from fungi common on damp building materials. Toxicol In Vitro 2017; 43:16-20. [PMID: 28535995 DOI: 10.1016/j.tiv.2017.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/13/2017] [Accepted: 05/20/2017] [Indexed: 11/17/2022]
Abstract
Most fungi that grow on damp building materials produce low molecular weight compounds, some of which are known to be toxic. In this study, we tested the hypothesis that exposure to some metabolites of fungi common on damp building materials would result in time-, dose-, and compound-specific responses in the production of various chemokines by RAW 264.7 cells. Cell cultures were exposed to a 10-7M or 10-8M metabolite dose for 2, 4, 8 or 24h. Metabolite concentrations used were based on those that might be expected in alveolar macrophages due to inhalation exposure from living or working in a damp building. Compared to controls, exposure provoked significant time-, dose- and compound-specific responses manifest as differentially elevated secretion of three of nine cytokines tested in culture supernatant of treated cells. The greatest number of cytokines produced in response to the metabolites tested were in andrastin A-treated cells (GM-CSF, TGFβ1, Tnf-α) followed by koninginin A (TGFβ1 and Tnf-α) and phomenone (GM-CSF, TGFβ1). Chaetoglobosin A, chaetomugilin D and walleminone exposures each resulted in significant time-specific production of Tnf-α only. This investigation adds to a body of evidence supporting the role of low molecular weight compounds from damp building materials as pathogen associated molecular patterns (PAMPs). Along with fungal glucan and chitin, these compounds contribute to the non-allergy based respiratory outcomes for people living and working in damp buildings.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - Carolyn T Chang
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
6
|
Segers FJJ, van Laarhoven KA, Huinink HP, Adan OCG, Wösten HAB, Dijksterhuis J. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity. Appl Environ Microbiol 2016; 82:5089-98. [PMID: 27316968 PMCID: PMC4988216 DOI: 10.1128/aem.00510-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/06/2016] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). IMPORTANCE Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state (unchanging conditions) has been important for evaluating whether a fungus can grow indoors. In the present study, we found that the fungus Cladosporium halotolerans, a common indoor fungus, is more resistant to changes in available water than the fungi Aspergillus niger and Penicillium rubens, despite the fact that the latter fungi can grow on media with low water availability. We concluded that the ability of fungi to deal with changes in humidity is at least as important as the ability to grow on low-water media.
Collapse
Affiliation(s)
- Frank J J Segers
- CBS-KNAW Fungal Biodiversity Centre, Applied and Industrial Mycology, Utrecht, The Netherlands
| | - Karel A van Laarhoven
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
| | - Hendrik P Huinink
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
| | - Olaf C G Adan
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven, The Netherlands
| | - Han A B Wösten
- Utrecht University, Microbiology, Department of Biology, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Applied and Industrial Mycology, Utrecht, The Netherlands
| |
Collapse
|
7
|
Kirjavainen PV, Täubel M, Karvonen AM, Sulyok M, Tiittanen P, Krska R, Hyvärinen A, Pekkanen J. Microbial secondary metabolites in homes in association with moisture damage and asthma. INDOOR AIR 2016; 26:448-456. [PMID: 25913237 DOI: 10.1111/ina.12213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
We aimed to characterize the presence of microbial secondary metabolites in homes and their association with moisture damage, mold, and asthma development. Living room floor dust was analyzed by LC-MS/MS for 333 secondary metabolites from 93 homes of 1-year-old children. Moisture damage was present in 15 living rooms. At 6 years, 8 children had active and 15 lifetime doctor-diagnosed asthma. The median number of different metabolites per house was 17 (range 8-29) and median sum load 65 (4-865) ng/m(2) . Overall 42 different metabolites were detected. The number of metabolites present tended to be higher in homes with mold odor or moisture damage. The higher sum loads and number of metabolites with loads over 10 ng/m(2) were associated with lower prevalence of active asthma at 6 years (aOR 0.06 (95% CI <0.001-0.96) and 0.05 (<0.001-0.56), respectively). None of the individual metabolites, which presence tended (P < 0.2) to be increased by moisture damage or mold, were associated with increased risk of asthma. Microbial secondary metabolites are ubiquitously present in home floor dust. Moisture damage and mold tend to increase their numbers and amount. There was no evidence indicating that the secondary metabolites determined would explain the association between moisture damage, mold, and the development of asthma.
Collapse
Affiliation(s)
- P V Kirjavainen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - M Täubel
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - A M Karvonen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - M Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - P Tiittanen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - R Krska
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - A Hyvärinen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - J Pekkanen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Hjelt Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Rodrigues J, Caruthers C, Azmeh R, Dykewicz MS, Slavin RG, Knutsen AP. The spectrum of allergic fungal diseases of the upper and lower airways. Expert Rev Clin Immunol 2016; 12:531-50. [PMID: 26776889 DOI: 10.1586/1744666x.2016.1142874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fungi cause a wide spectrum of fungal diseases of the upper and lower airways. There are three main phyla involved in allergic fungal disease: (1) Ascomycota (2) Basidiomycota (3) Zygomycota. Allergic fungal rhinosinusitis (AFRS) causes chronic rhinosinusitis symptoms and is caused predominantly by Aspergillus fumigatus in India and Bipolaris in the United States. The recommended treatment approach for AFRS is surgical intervention and systemic steroids. Allergic bronchopulmonary aspergillosis (APBA) is most commonly diagnosed in patients with asthma or cystic fibrosis. Long term systemic steroids are the mainstay treatment option for ABPA with the addition of an antifungal medication. Fungal sensitization or exposure increases a patient's risk of developing severe asthma and has been termed severe asthma associated with fungal sensitivity (SAFS). Investigating for triggers and causes of a patient's asthma should be sought to decrease worsening progression of the disease.
Collapse
Affiliation(s)
| | - Carrie Caruthers
- a Allergy & Immunology , Saint Louis University , St. Louis , MO , USA
| | - Roua Azmeh
- a Allergy & Immunology , Saint Louis University , St. Louis , MO , USA
| | - Mark S Dykewicz
- a Allergy & Immunology , Saint Louis University , St. Louis , MO , USA
| | - Raymond G Slavin
- a Allergy & Immunology , Saint Louis University , St. Louis , MO , USA
| | - Alan P Knutsen
- a Allergy & Immunology , Saint Louis University , St. Louis , MO , USA
| |
Collapse
|
9
|
Rhinitis, Ocular, Throat and Dermal Symptoms, Headache and Tiredness among Students in Schools from Johor Bahru, Malaysia: Associations with Fungal DNA and Mycotoxins in Classroom Dust. PLoS One 2016; 11:e0147996. [PMID: 26829324 PMCID: PMC4734676 DOI: 10.1371/journal.pone.0147996] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
Collapse
|
10
|
Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun 2015. [PMID: 26209532 DOI: 10.1177/1753425915595874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last 40 yr, the majority of research on glucans has focused on β-(1→3)-glucans. Recent studies indicate that β-(1→6)-glucans may be even more potent immune modulators than β-(1→3)-glucans. Mechanisms by which β-(1→6)-glucans are recognized and modulate immunity are unknown. In this study, we examined the interaction of purified water-soluble β-(1→6)-glucans with macrophage cell lines and primary peritoneal macrophages and the cellular and molecular consequences of this interaction. Our results indicate the existence of a specific β-(1→6)-glucan receptor that internalizes the glucan ligand via a clathrin-dependent mechanism. We show that the known β-(1→3)-glucans receptors are not responsible for β-(1→6)-glucan recognition and interaction. The receptor-ligand uptake/interaction has an apparent dissociation constant (KD) of ∼ 4 µM, and was associated with phosphorylation of ERK and JNK but not IκB-α or p38. Our results indicate that macrophage interaction with β-(1→6)-glucans may lead to modulation of genes associated with anti-fungal immunity and recruitment/activation of neutrophils. In summary, we show that macrophages specifically bind and internalize β-(1→6)-glucans followed by activation of intracellular signaling and modulation of anti-fungal immune response-related gene regulation. Thus, we conclude that the interaction between innate immunity and β-(1→6)-glucans may play an important role in shaping the anti-fungal immune response.
Collapse
Affiliation(s)
- Ilka Noss
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Bridget M Graves
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Michael D Kruppa
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
11
|
Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. INDOOR AIR 2015; 25:125-56. [PMID: 25601374 DOI: 10.1111/ina.12182] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/20/2014] [Indexed: 05/21/2023]
Abstract
This review discusses the role of fungi and fungal products in indoor environments, especially as agents of human exposure. Fungi are present everywhere, and knowledge for indoor environments is extensive on their occurrence and ecology, concentrations, and determinants. Problems of dampness and mold have dominated the discussion on indoor fungi. However, the role of fungi in human health is still not well understood. In this review, we take a look back to integrate what cultivation-based research has taught us alongside more recent work with cultivation-independent techniques. We attempt to summarize what is known today and to point out where more data is needed for risk assessment associated with indoor fungal exposures. New data have demonstrated qualitative and quantitative richness of fungal material inside and outside buildings. Research on mycotoxins shows that just as microbes are everywhere in our indoor environments, so too are their metabolic products. Assessment of fungal exposures is notoriously challenging due to the numerous factors that contribute to the variation of fungal concentrations in indoor environments. We also may have to acknowledge and incorporate into our understanding the complexity of interactions between multiple biological agents in assessing their effects on human health and well-being.
Collapse
Affiliation(s)
- A Nevalainen
- Institute for Health and Welfare, Kuopio, Finland
| | | | | |
Collapse
|
12
|
Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl Microbiol Biotechnol 2014; 98:9953-66. [DOI: 10.1007/s00253-014-6178-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
|
13
|
Desroches TC, McMullin DR, Miller JD. Extrolites of Wallemia sebi, a very common fungus in the built environment. INDOOR AIR 2014; 24:533-542. [PMID: 24471934 DOI: 10.1111/ina.12100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Wallemia sebi has been primarily known as a spoilage fungus of dried, salted fish and other foods that are salty or sweet. However, this fungus is also very common in house dust. The health effects of chronic exposure to mold and dampness are known to be associated with both allergens and various inflammatory compounds, including the secondary metabolites of building associated fungi and their allergens. IgE sensitization to W. sebi has been long reported from housing and occupational exposures. However, its allergens have not been described previously. Strains from food have been reported to produce a number of compounds with modest toxicity. Strains from the built environment in Canada produced a number of metabolites including the known compound walleminone and a new compound 1-benzylhexahydroimidazo [1,5-α] pyridine-3,5-dione which we call wallimidione. Based on an in silico analysis, wallimidione is likely the most toxic of the metabolites reported to date from W. sebi. We found that the primary human antigen of W. sebi is a 47 kDa excreted cellulase present in high concentrations in W. sebi arthrospores. This species is a basidiomycete and, unsurprisingly, the antigen was not found in extracts of other fungi common in the built environment, all ascomycetes.
Collapse
Affiliation(s)
- T C Desroches
- Ottawa Carleton Institute of Chemistry, Carleton University, Ottawa, ON, Canada
| | | | | |
Collapse
|
14
|
Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, Oh H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 2013; 18:13245-59. [PMID: 24165583 PMCID: PMC6270177 DOI: 10.3390/molecules181113245] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/05/2013] [Accepted: 10/18/2013] [Indexed: 01/13/2023] Open
Abstract
In the course of a bioassay-guided study of metabolites from the marine fungus Eurotium sp. SF-5989, two diketopiperazine type indole alkaloids, neoechinulins A and B, were isolated. In this study, we investigated the anti-inflammatory effects of neoechinulins A (1) and B (2) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Neoechinulin A (1) markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner ranging from 12.5 µM to 100 µM without affecting the cell viability. On the other hand, neoechinulin B (2) affected the cell viability at 25 µM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1) at lower doses. Furthermore, neoechinulin A (1) decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). We also confirmed that neoechinulin A (1) blocked the activation of nuclear factor-kappaB (NF-κB) in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB)-α. Moreover, neoechinulin A (1) decreased p38 mitogen-activated protein kinase (MAPK) phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1) in LPS-stimulated RAW264.7 macrophages were due to the inhibition of the NF-κB and p38 MAPK pathways, suggesting that neoechinulin A (1) might be a potential therapeutic agent for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Kyoung-Su Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Xiang Cui
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, 977 Gongyuan Road, Yanji 133002, Jilin, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Dong-Sung Lee
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea; E-Mail: (J.H.S.)
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea; E-Mail: (J.H.Y.)
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea; E-Mails: (K.-S.K); (X.C.); (D.-S.L.)
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.K.); (H.O.); Tel.: +82-63-850-6823 (Y.-C.K.); Tel.: +82-63-850-6815 (H.O.); Fax: +82-63-852-8837 (H.O.)
| |
Collapse
|
15
|
Simonetti SO, Larghi EL, Bracca ABJ, Kaufman TS. Angular tricyclic benzofurans and related natural products of fungal origin. Isolation, biological activity and synthesis. Nat Prod Rep 2013; 30:941-69. [PMID: 23719995 DOI: 10.1039/c3np70014c] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally-occurring angular tricyclic benzofuran/isobenzofuran derivatives of fungal origin and related compounds, in which two heterocyclic rings are fused to a central benzenoid moiety, are covered. Emphasis is placed on the structure of the compounds, together with their relevant biological activities, source microorganisms, country or region of origin and environmental conditions. In addition, proposed biosynthetic pathways, as well as the total syntheses of some of the compounds, including those that lead to structural revision or to correct stereochemical assignments, and related synthetic efforts, are discussed in detail.
Collapse
Affiliation(s)
- Sebastián O Simonetti
- Instituto de Química Rosario-CONICET-UNR, Suipacha 531, S2002LRK, Rosario, SF, Argentina
| | | | | | | |
Collapse
|
16
|
Flamant-Hulin M, Annesi-Maesano I, Caillaud D. Relationships between molds and asthma suggesting non-allergic mechanisms. A rural-urban comparison. Pediatr Allergy Immunol 2013; 24:345-51. [PMID: 23692327 DOI: 10.1111/pai.12082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND A fungal index, based on specific microbial volatile organic compounds (MVOCs) emission, was employed and related to asthma in children from rural and urban dwellings after stratification on the children atopic status. METHODS A nested case-control design was used to draw, from 2 cross-sectional surveys, 20 asthmatics and 26 controls living in urban areas, and 24 asthmatics and 25 controls in rural areas. MVOCs levels were assessed in the living-room during one week; during that week, children performed clinical tests and their parents were invited to fill in a questionnaire on respiratory health. RESULTS According to the objective fungal index, 70.5% of cases and 49.0% of controls were exposed to molds. More children with current asthma had experienced mold exposure in their homes (OR=3.38, 95% CI (1.16; 9.90)), especially amongst children living in rural areas. Atopic status modified this association: exposure to molds was found to be related to current asthma only in non-atopic children (OR=10.42, 95% CI (2.42; 44.81)). Among urban -dwelling children that could be screened at hospital, asthmatic children living in contaminated dwellings had a higher proportion of blood neutrophils and a lower FEV1 (forced expiratory volume in 1 second) than non-exposed ones. CONCLUSION Our findings based on an objective assessment of MVOCs suggest adverse respiratory effects of molds. Our results suggest that when looking at the aetiology of non-atopic asthma, mold exposure should be systematically assessed.
Collapse
Affiliation(s)
- Marion Flamant-Hulin
- INSERM, UMR 707, EPAR, Paris, France; UPMC Univ Paris 06, UMR_S 707, EPAR, Paris, France
| | | | | |
Collapse
|
17
|
Rand TG, Robbins C, Rajaraman D, Sun M, Miller JD. Induction of Dectin-1 and asthma-associated signal transduction pathways in RAW 264.7 cells by a triple-helical (1, 3)-β-D glucan, curdlan. Arch Toxicol 2013; 87:1841-50. [PMID: 23543010 DOI: 10.1007/s00204-013-1042-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/08/2013] [Indexed: 11/25/2022]
Abstract
People living in damp buildings are typically exposed to spore and mycelial fragments of the fungi that grow on damp building materials. There is experimental evidence that this exposure to triple-helical (1, 3)-β-D glucan and low molecular weight toxins may be associated with non-atopic asthma observed in damp and moldy buildings. However, the mechanisms underlying this response are only partially resolved. Using the pure (1, 3)-β-D glucan, curdlan, and the murine macrophage cell line, RAW 264.7, there were two objectives of this study. The first was to determine whether signal transduction pathways activating asthma-associated cell signaling pathways were stimulated using mouse transduction Pathway Finder(®) arrays and quantitative real-time (QRT) PCR. The second objective was to evaluate the dose and temporal responses associated with transcriptional changes in asthma-associated cytokines, the signal transduction receptor gene Dectin-1, and various transcription factor genes related to the induction of asthma using customized RT-PCR-based arrays. Compared to controls, the 10(-7) M curdlan treatment induced significant changes in gene transcription predominately in the NFkB, TGF-β, p53, JAK/STAT, P13/AKT, phospholipase C, and stress signaling pathways. The 10(-8) M curdlan treatment mainly induced NFkB and TGF-β pathways. Compared to controls, curdlan exposures also induced significant dose- and time-dependent changes in the gene translations. We found that that curdlan as a non-allergenic potentiator modulates a network of transduction signaling pathways not only associated with TH-1, TH-2, and TH-3 cell responses including asthma potentiation, but a variety of other cell responses in RAW 264.7 cells. These results help provide mechanistic basis for some of the phenotypic changes associated with asthma that have been observed in in vitro, in vivo, and human studies and open up a hypothesis-building process that could explain the rise of non-atopic asthma associated with fungi.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, 923 Robie St, Halifax, NS, B3H 3C3, Canada,
| | | | | | | | | |
Collapse
|
18
|
Synthetic and structure-activity relationship studies on bioactive natural products. Biosci Biotechnol Biochem 2013; 77:446-54. [PMID: 23470748 DOI: 10.1271/bbb.120884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes our research into the synthesis and structure-activity relationships of epolactaene, neoechinulin A, plakevulin A, pseudodeflectusin and ustusorane C. These natural products are attractive in view of their apoptosis-inducing activity, cytoprotective activity against peroxynitrite, inhibitory activity against DNA polymerases, and cytotoxicity in cancer cells.
Collapse
|
19
|
McMullin DR, Sumarah MW, Blackwell BA, Miller JD. New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Chaetoglobosins and azaphilones produced by Canadian strains of Chaetomium globosum isolated from the indoor environment. Mycotoxin Res 2012; 29:47-54. [DOI: 10.1007/s12550-012-0144-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 02/04/2023]
|