1
|
Das R, Mohanty P, Dash PP, Mishra S, Bishoyi AK, Mishra L, Prusty L, Behera DP, Dubey D, Mishra M, Sahoo H, Khan MS, Sethi SK, Jali BR. Unveiling the interaction, cytotoxicity and antibacterial potential of pyridine derivatives: an experimental and theoretical approach with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03541-6. [PMID: 39485531 DOI: 10.1007/s00210-024-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
The binding interactions between bovine serum albumin (BSA) and three pyridine derivatives, i.e., 2-(5-bromopyridin-3-yl) acetic acid (L1), 3-bromo-5-nitropyridine (L2) and 2-chloro-4-nitropyridine (L3), have been carried out using UV-Vis and fluorescence spectroscopic methods. Fluorescence intensity quenching is observed by adding L2 and L3 to the BSA solution. The quenched fluorescence emission is due to the static nature. An isothermal titration calorimetry (ITC) experiment shows the binding ability of L1 with BSA. The binding constants are found to be 7.23 ± 0.32 × 105 M-1 for L1. The thermodynamic parameters were calculated from ITC measurements (i.e., ∆H = -2.78 ± 0.08 kcal/mol, ∆G = -5.65 ± 0.25 kcal/mol, and -T∆S = -2.87 ± 0.11 kcal/mol), which indicated that the protein-ligand complex formation between L1 and BSA is mainly due to the hydrogen bonds and van der Waals interactions. Cyclic voltammetry (CV) and structure activity and relationship (SAR) studies have been carried out to establish the relationship between ligands and proteins. Additionally, we conducted an antibacterial assay with gram-positive Staphylococcus aureus, Enterococcus faecalis, and negative bacterial strains Acinetobacter baumannii and Escherichia coli against L1, L2, and L3, aiming to address the challenges posed by the co-existence of multidrug-resistant bacteria. Finally, drosophila is used to test the cytotoxicity of ligands L1, L2, and L3's in vitro.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Ajit K Bishoyi
- Department of Clinical Hematology, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Devi P Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Debasmita Dubey
- Medical Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, 751003, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Mohd S Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768001, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India.
| |
Collapse
|
2
|
Das R, Dash PP, Bishoyi AK, Mohanty P, Mishra L, Prusty L, Sahoo CR, Padhy RN, Mishra M, Sahoo H, Sahoo SK, Sethi SK, Jali BR. Antibacterial and cytotoxicity studies of pyrrolo-based organic scaffolds and their binding interaction with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8725-8743. [PMID: 38829386 DOI: 10.1007/s00210-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, 395007, Gujarat, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
3
|
Rana TK, Mohanty P, Dash PP, Mishra S, Tripathi SS, Mohapatra P, Barick AK, Jena PK, Bhaskaran R, Khan MS, Khan MR, Behera L, Jali BR. Unveiling Fluorescence Spectroscopy, Molecular Docking and Dynamic Simulations: Interactions Between Protein and 2, 4-Dinitrophenylhydrazine Schiff Base. J Fluoresc 2024:10.1007/s10895-024-03939-8. [PMID: 39422873 DOI: 10.1007/s10895-024-03939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.
Collapse
Affiliation(s)
- Tapan K Rana
- Department of Chemistry, Maharaja SriRam Chandra Bhanja Deo University, Baripada, Mayurbhanj, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sorav Sagar Tripathi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Aruna Kumar Barick
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pradip K Jena
- College of Basic Science and Humanities, OUAT, Bhubaneswar, 751003, Odisha, India
| | - R Bhaskaran
- Department of Chemistry, Madanapalle Institute of Technology and Science, Kadiri Road, Angallu, Madanapalle, 517325, Annamayya District, Andhra Pradesh, India
| | - Mohd S Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Lingaraj Behera
- Department of Chemistry, Maharaja SriRam Chandra Bhanja Deo University, Baripada, Mayurbhanj, Odisha, India.
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
4
|
Chaves OA, Loureiro RJS, Serpa C, Cruz PF, Ferreira ABB, Netto-Ferreira JC. Increasing the polarity of β-lapachone does not affect its binding capacity with bovine plasma protein. Int J Biol Macromol 2024; 263:130279. [PMID: 38401585 DOI: 10.1016/j.ijbiomac.2024.130279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Despite ortho-quinones showing several biological and pharmacological activities, there is still a lack of biophysical characterization of their interaction with albumin - the main carrier of different endogenous and exogenous compounds in the bloodstream. Thus, the interactive profile between bovine serum albumin (BSA) with β-lapachone (1) and its corresponding synthetic 3-sulfonic acid (2, under physiological pH in the sulphonate form) was performed. There is one main binding site of albumin for both β-lapachones (n ≈ 1) and a static fluorescence quenching mechanism was proposed. The Stern-Volmer constant (KSV) values are 104 M-1, indicating a moderate binding affinity. The enthalpy (-3.41 ± 0.45 and - 8.47 ± 0.37 kJ mol-1, for BSA:1 and BSA:2, respectively) and the corresponding entropy (0.0707 ± 0.0015 and 0.0542 ± 0.0012 kJ mol-1 K-1) values indicate an enthalpically and entropically binding driven. Hydrophobic interactions and hydrogen bonding are the main binding forces. The differences in the polarity of 1 and 2 did not change significantly the affinity to albumin. In addition, the 1,2-naphthoquinones showed a similar binding trend compared with 1,4-naphthoquinones.
Collapse
Affiliation(s)
- Otávio A Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), 21040-361 Rio de Janeiro, RJ, Brazil.
| | - Rui J S Loureiro
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro F Cruz
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Aurélio B B Ferreira
- Institute of Chemistry, Department of Organic Chemistry, Federal Rural University of Rio de Janeiro, Rodovia BR-465, Km 7, 23.890-000 Seropédica, RJ, Brazil
| | - José Carlos Netto-Ferreira
- Institute of Chemistry, Department of Organic Chemistry, Federal Rural University of Rio de Janeiro, Rodovia BR-465, Km 7, 23.890-000 Seropédica, RJ, Brazil.
| |
Collapse
|
5
|
Behera S, Dash PP, Bishoyi AK, Dash K, Mohanty P, Sahoo CR, Padhy RN, Mishra M, Ghosh BN, Sahoo H, Jali BR. Protein interactions, molecular docking, antimicrobial and antifungal studies of terpyridine ligands. J Biomol Struct Dyn 2023; 41:11274-11285. [PMID: 36562209 DOI: 10.1080/07391102.2022.2161012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Resistance to antibiotics/antibacterials/antifungals in pathogenic microbes has been developing over the past few decades and has recently become a commonplace public-health peril. Thus, alternative nontoxic potent antibiotic agents are covertly needed to control antibiotic-resistant outbreaks. In an effort to combat the challenges posed by the co-occurrence of multidrug resistance, two terpyridine ligands 4'-(4-N,N'-dimethylaminophenyl)-2,2':6',2″-terpyridine (L1) and 4'-(4-tolyl)-2,2':6',2″-terpyridine (L2) have been designed, prepared and confirmed their structure by spectral studies. Thereafter, antimicrobial assay was performed against gram positive and negative bacterial strains along with fungal strains. Both compounds L1 and L2 exhibited remarkable inhibitory activities against bacteria, Escherichia coli and Staphylococcus aureus at MIC values 6.25 and 3.125 µg/ml, respectively. In addition, in silico molecular docking studies were ascertained with bacterial DNA gyrase and fungal demethylase. Furthermore, both L1 and L2 could bind Bovine Serum Albumin (BSA) protein and binding interaction has been studied with the help of UV-Visible and fluorescence spectroscopy. While fluorescence of BSA unperturbed in the presence of L2, an addition of L1 to the solution of BSA resulted significant quenching. The binding constant calculations at different temperature confirmed that the fluorescence quenching between BSA and L1 is predominantly static in nature. The toxicity of L1 and L2 was checked using Drosophila melanogaster. The toxicity analysis suggest both the dyes are non-cytotoxic in nature.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - K Dash
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, Odisha, India
| | - M Mishra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - B N Ghosh
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - H Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, India
| | - B R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, India
| |
Collapse
|
6
|
Water-induced fluorescence turn-on imidazole derivative and its interaction with bovine serum albumin. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Ferreira VF, de Carvalho AS, da Rocha DR. Strategies for the Synthesis of Mono- and Bis-Thionaphthoquinones. Curr Org Synth 2021; 18:535-546. [PMID: 33655837 DOI: 10.2174/1570179418666210224124603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
The subclass of compounds that have the nucleus 1,4-naphthoquinone is the most diverse of the class of quinones, which have a large number of substances and several that have useful applications ranging from medicinal chemistry to application in materials with special properties. The introduction of one or two substituents with the sulfur heteroatom in the naphthoquinone nucleus generates products containing alkyl and aryl groups that amplify certain biological properties against bacteria, viruses and fungi. There are several methods of preparing these compounds, mainly from low molecular weight naphthoquinones with two electrophilic sites capable of reacting with sulfides generating diversity and new classes of compounds, including new sulfur heterocycles and sulfur heterocycles fused with naphthoquinones. These compounds have been shown to be bioactive against several biological targets. This review will describe the methods of their synthesis and, when applicable, their biological activities.
Collapse
Affiliation(s)
- Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, Rua Doutor Mário Viana, 523, Santa Rosa, 24241-000, Niterói-RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| | - David R da Rocha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduação em Química, Outeiro de São João Batista, s/n, Centro 24020-141 Niterói-RJ. Brazil
| |
Collapse
|
8
|
Chrastina A, Welsh J, Rondeau G, Abedinpour P, Borgström P, Baron VT. Plumbagin‐Serum Albumin Interaction: Spectral, Electrochemical, Structure‐Binding Analysis, Antiproliferative and Cell Signaling Aspects with Implications for Anticancer Therapy. ChemMedChem 2020; 15:1338-1347. [DOI: 10.1002/cmdc.202000157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM) 505 Coast Blvd. South La Jolla CA 92037 USA
| | - John Welsh
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Gaelle Rondeau
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Parisa Abedinpour
- Proteogenomics Research Institute for Systems Medicine (PRISM) 505 Coast Blvd. South La Jolla CA 92037 USA
| | - Per Borgström
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Véronique T. Baron
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| |
Collapse
|
9
|
Behera S, Behura R, Mohanty M, Dinda R, Mohanty P, Verma AK, Sahoo SK, Jali B. Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2,4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
10
|
Singh MP, Baruah JB. Modulation of dual fluorescence modes and emissions of 2-(1,4-dioxo-1,4-dihydro-naphthalen-2-yl-amino)benzoic acid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Dual Modes and Dual Emissions of an Amino-Naphthoquinone Derivative. J Fluoresc 2017; 27:1923-1928. [DOI: 10.1007/s10895-017-2130-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/13/2017] [Indexed: 11/26/2022]
|
13
|
Rippa M, Castagna R, Tkachenko V, Zhou J, Petti L. Engineered nanopatterned substrates for high-sensitive localized surface plasmon resonance: an assay on biomacromolecules. J Mater Chem B 2017; 5:5473-5478. [PMID: 32264087 DOI: 10.1039/c7tb00777a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, we report on novel iso-Y-shaped-nanopillar based photonic crystals (PCs) engineered for plasmonic lab-on-a-chip advanced diagnostics. The iso-Y shaped units are selected on the basis of their plasmonic properties, analyzed numerically and experimentally. We show that by accurately choosing the nanopillar shape, dimensions and their geometrical disposal it is possible to obtain efficient optical 2D structures for biomolecule detection by high-sensitive localized surface plasmonic resonance (LSPR). In particular, an assay is realized by using bovine serum albumin (BSA), a widely recognized model for biosystem studies. BSA was simply deposited on a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid (4-MBA) previously grown-up on the plasmonic substrate. We demonstrate that the geometries considered allow the design of LSPR nano-assays working in the visible-NIR region based on both intensity interrogation and the resonance peak shift permitting the sensing of BSA with a limit of detection in the order of picomoles (LOD = 233 pM).
Collapse
Affiliation(s)
- M Rippa
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, 80072 Pozzuoli, Italy.
| | | | | | | | | |
Collapse
|
14
|
Hamama WS, Hassanien AEDE, Zoorob HH. Advanced Routes in Synthesis and Reactions of Lawsone Molecules (2-Hydroxynaphthalene-1,4-dione). J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wafaa S. Hamama
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Alaa El-Din E. Hassanien
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Hanafi H. Zoorob
- Chemistry Department, Faculty of Science; Mansoura University; El-Gomhoria Street ET-35516 Mansoura Egypt
| |
Collapse
|
15
|
Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 2015; 86:27-45. [PMID: 25819487 DOI: 10.1016/j.addr.2015.03.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/11/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the principles of HSA and AGP binding as well as the structure topology of the proteins, the current trends and perspectives in the field of PPB predictions are presented and discussed considering both HSA and AGP binding. Since however for the latter protein systematic studies have started only the last years, the review focuses mainly to HSA. One part of the review highlights the challenge to develop rapid techniques for HSA and AGP binding simulation and their performance in assessment of PPB. The second part focuses on in silico approaches to predict HSA and AGP binding, analyzing and evaluating structure-based and ligand-based methods, as well as combination of both methods in the aim to exploit the different information and overcome the limitations of each individual approach. Ligand-based methods use the Quantitative Structure-Activity Relationships (QSAR) methodology to establish quantitate models for the prediction of binding constants from molecular descriptors, while they provide only indirect information on binding mechanism. Efforts for the establishment of global models, automated workflows and web-based platforms for PPB predictions are presented and discussed. Structure-based methods relying on the crystal structures of drug-protein complexes provide detailed information on the underlying mechanism but are usually restricted to specific compounds. They are useful to identify the specific binding site while they may be important in investigating drug-drug interactions, related to PPB. Moreover, chemometrics or structure-based modeling may be supported by experimental data a promising integrated alternative strategy for ADME(T) properties optimization. In the case of PPB the use of molecular modeling combined with bioanalytical techniques is frequently used for the investigation of AGP binding.
Collapse
|
16
|
Nath JK, Baruah JB. Cyclic aromatic imides as a potential class of molecules for supramolecular interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01485a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prospects of stacking interactions of imides beneficial to generation of new soft materials are projected by analysing examples of primary building blocks that provide a basis for understanding at the molecular level.
Collapse
Affiliation(s)
- Jayanta K. Nath
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| |
Collapse
|