1
|
Majidi S, Aramesh-Boroujeni Z, Moghadam M, Jahani S. Can One Novel Lanthanide Complex and Its Nano-Encapsulated Compounds Afford Advances in Biological Inorganic Chemistry? A Biological Applications Study for Dysprosium (III) Complex and Its Nano-Encapsulated Compounds. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2075859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Somayeh Majidi
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
2
|
Jahani S, Aramesh-Boroujeni Z, Noroozifar M. In vitro anticancer and antibacterial activates of the yttrium(III) complex and its nano-carriers toward DNA cleavage and biological interactions with DNA and BSA; An experimental and computational studie. J Trace Elem Med Biol 2021; 68:126821. [PMID: 34315038 DOI: 10.1016/j.jtemb.2021.126821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES In this research, the biological properties of the yttrium (III) (Y) complex, with 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) ligand, were examined for in vitro fish DNA (FS-DNA)/ bovine serum albumin (BSA) interactions, DNA-cleavage, anticancer and antibacterial activities. METHODS Multi-spectrophotometric techniques and computational calculations were used for the interaction studies of the BSA and FS-DNA with the Y-complex. Absorption and fluorescence spectroscopy methods were used to define thermodynamic parameters, the binding constants (Kb), and the probable binding mechanism. Also, the DFT (density functional theory) study and molecular docking calculation of the Y-complex were done. Besides, the nanocarriers of Y-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. Finally, DNA-cleavage, anticancer, and antibacterial activities of this complex were investigated. RESULTS The absorption and fluorescence measurements were exhibited that the Y-complex has a high binding affinity to FS-DNA and BSA through a static mechanism. The negative thermodynamic parameter values for both DNA/BSA binding were confirmed that the hydrogen bonds and van der Waals forces played an essential role in the spontaneous bonding procedure. The site marker competitive studies for BSA confirmed that the Y-complex bonds to the sub-domain IB of protein (site III) on BSA, which was entirely agreement by docking calculation. The complex has displayed efficient DNA cleavage, antifungal and antibacterial activities. The anticancer activity of the Y-complex and its starch/lipid nano-encapsulated was carried out in cancer cell lines, which exposed considerably high activity. CONCLUSIONS Thus, Y-complex can be transported professionally through BSA in the blood and bonds in the groove of DNA. Base on biological applications of the Y-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer and antibacterial candidates.
Collapse
Affiliation(s)
- Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
3
|
The fascinating polyoxometalates. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci Rep 2021; 11:6604. [PMID: 33758300 PMCID: PMC7988124 DOI: 10.1038/s41598-021-86119-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
Herein, in a one-pot method, the reduced graphene oxide layers with the assistance of multiwalled carbon nanotubes were decorated to provide a suitable space for the in situ growth of CoNi2S4, and the porphyrins were incorporated into the layers as well to increase the sensitivity of the prepared nanostructure. The prepared nanocomposite can establish π-π interactions between the genetic material and on the surface of porphyrin rings. Also, hydrogen bonds between genetic domains and the porphyrin' nitrogen and the surface hydroxyl groups are probable. Furthermore, the potential donor-acceptor relationship between the d7 transition metal, cobalt, and the genetic material provides a suitable way to increase the interaction and gene loading , and transfections. The reason for this phenomenon was optimized to increase the EGFP by up to 17.9%. Furthermore, the sensing ability of the nanocomposite towards H2O2 was investigated. In this regard, the limit of detection of the H2O2 obtained 10 µM. Also, the in situ biosensing ability in the HEK-293 and PC12 cell lines was evaluated by the addition of PMA. The nanocomposite showed the ability to detect the released H2O2 after adding the minimum amount of 120 ng/mL of the PMA.
Collapse
|
5
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW
8
O
30
} Determined by Single‐Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
6
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021; 60:8344-8351. [PMID: 33491871 DOI: 10.1002/anie.202100297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/21/2022]
Abstract
The 10-nuclear heteroatom cluster modified {SbW8 O30 } was successfully synthesized and exhibited inhibitory activity (IC50 =0.29 μM). Based on proteomics analysis, Na4 Ni2 Sb2 W2 -SbW8 inhibited ATP production by affecting the expression of 16 related proteins, hindering metabolic functions in vivo and cell proliferation due to reactive oxygen species (ROS) stress. In particular, the low expression of FAD/FMN-binding redox enzymes (relative expression ratio of the experimental group to the control=0.43843) could be attributed to the redox mechanism of Na4 Ni2 Sb2 W2 -SbW8 , which was consistent with the effect of polyoxometalates (POMs) and FMN-binding proteins on ATP formation. An electrochemical study showed that Na4 Ni2 Sb2 W2 -SbW8 combined with FMN to form Na4 Ni2 Sb2 W2 -SbW8 -2FMN complex through a one-electron process of the W atoms. Na4 Ni2 Sb2 W2 -SbW8 acted as catalase and glutathione peroxidase to protect the cell from ROS stress, and the inhibition rates were 63.3 % at 1.77 μM of NADPH and 86.06 % at 10.62 μM of 2-hydroxyterephthalic acid. Overall, our results showed that POMs can be specific oxidative/antioxidant regulatory agents.
Collapse
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
7
|
Qu X, Shi D, Fu Y, Chu D, Yang Y, Liu Y. Enhanced antitumor activity of polyoxometalates loaded solid lipid nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Hashemniaye-Torshizi R, Ashraf N, Arbab-Zavar MH, Dianat S. In situ anodic dissolution–cathodic deposition route for preparation of the Pt–SiW 11Co/SiW 11Co–CNP/GC electrode: application as an efficient electrode for the hydrogen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01195a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel nanohybrid based on carbon nanoparticles, platinum nanoparticles, and SiW11Co polyoxometalate is introduced as an efficient electrocatalyst for the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
| | - Narges Ashraf
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | | | - Somayeh Dianat
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 71961
- Iran
| |
Collapse
|
9
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of parent and nano-encapsulated terbium(III) complex toward its photoluminescence properties, FS-DNA, BSA binding affinity, and biological applications. J Trace Elem Med Biol 2020; 61:126564. [PMID: 32485498 DOI: 10.1016/j.jtemb.2020.126564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects. OBJECTIVES Base on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined. METHODS The interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines. RESULTS The experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound. CONCLUSIONS Tb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Isfahan University of Medical Sciences, Isfahan, Iran; Department of Chemistry, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
10
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Parent and nano-encapsulated ytterbium(iii) complex toward binding with biological macromolecules, in vitro cytotoxicity, cleavage and antimicrobial activity studies. RSC Adv 2020; 10:23002-23015. [PMID: 35520322 PMCID: PMC9054636 DOI: 10.1039/d0ra03895d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023] Open
Abstract
To determine the chemotherapeutic and pharmacokinetic aspects of an ytterbium complex containing 2,9-dimethyl-1,10-phenanthroline (Me2Phen), in vitro binding studies were carried out with FS-DNA/BSA by employing multiple biophysical methods and a molecular modeling study. There are different techniques including absorption spectroscopy, fluorescence spectroscopy, circular dichroism studies, viscosity experiments (only in the case of DNA), and competitive experiments used to determine the interaction mode between DNA/BSA and the ytterbium-complex. The results showed that the Yb-complex exhibited a high propensity for the interaction of BSA and DNA via hydrophobic interactions and van der Waals forces. Further, a competitive examination and docking study showed that the interaction site of the ytterbium complex on BSA is site III. The results of docking calculations for DNA/BSA were in good agreement with experimental findings. The complex displays efficient DNA cleavage in the presence of hydrogen peroxide. Moreover, antimicrobial studies of different bacteria and fungi indicated its promising antibacterial activity. In vitro cytotoxicity studies of the Yb-complex, starch nano-encapsulated, and lipid nano-encapsulated were carried out in MCF-7 and A-549 cell lines, which revealed significantly good activity. The results of anticancer activity studies showed that the cytotoxic activity of the Yb-complex was increased when encapsulated with nanocarriers. Based on biological applications of the Yb-complex, it can be concluded that this complex and its nanocarriers can act as novel anticancer and antimicrobial candidates. The biological applications of Yb-complexes including anticancer, antimicrobial and DNA cleavage ability, and their interaction with FS-DNA and BSA were examined.![]()
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory
- AlZahra Hospital
- Isfahan University of Medical Sciences
- Iran
- Young Researchers and Elite Club, Najafabad Branch
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
| |
Collapse
|
11
|
Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer activity of parent and nano-encapsulated samarium(iii) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity. RSC Adv 2020; 10:31979-31990. [PMID: 35518188 PMCID: PMC9056537 DOI: 10.1039/d0ra05280a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
Based on the potential anticancer properties of lanthanide complexes, the anticancer activity of the Sm(iii) complex containing a 2,2′-bipyridine ligand (bpy) and its interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) were examined experimentally and by molecular docking in this paper. Absorption and fluorescence spectroscopic methods were used to define the thermodynamic parameters, binding constant (Kb), and the probable binding mechanism. It was concluded that the Sm complex interacts with FS-DNA through a minor groove with a Kb of 105 M−1. Also, the Kb for the BSA binding at 298 K was found to be 5.89 × 105 M−1, showing relatively a high tendency of the Sm complex to DNA and BSA. Besides, the Sm complex was docked to BSA and DNA by the autodock program. The results of the docking calculations were in good agreement with the experimental examinations. Additionally, the antifungal and antibacterial properties of this complex were investigated. The anticancer tests on the effect of the Sm complex, starch nano-encapsulation, and lipid nano-encapsulation in MCF-7 and A-549 cell lines were performed by the MTT method. It can be observed that the Sm complex and its nanocarriers presented a selective inhibitory effect on various cancer cell growths. The biological properties of the Sm-complex, such as its interaction with FS-DNA and BSA, anticancer, and antimicrobial activities were studied.![]()
Collapse
Affiliation(s)
- Saeid Asadpour
- Department of Chemistry
- Faculty of Sciences
- Shahrekord University
- Shahrekord 115
- Iran
| | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory
- AlZahra Hospital
- Isfahan University of Medical Sciences
- Iran
- Young Researchers and Elite Club
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| |
Collapse
|
12
|
|
13
|
Zhang S, Wang KY, Cheng L, Wang C. Preparation and characterization of monocobalt-substituted tungstosilicate/aniline/graphene nanocomposite. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Bijelic A, Aureliano M, Rompel A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew Chem Int Ed Engl 2019; 58:2980-2999. [PMID: 29893459 PMCID: PMC6391951 DOI: 10.1002/anie.201803868] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Polyoxometalates (POMs) are an emerging class of inorganic metal oxides, which over the last decades demonstrated promising biological activities by the virtue of their great diversity in structures and properties. They possess high potential for the inhibition of various tumor types; however, their unspecific interactions with biomolecules and toxicity impede their clinical usage. The current focus of the field of biologically active POMs lies on organically functionalized and POM-based nanocomposite structures as these hybrids show enhanced anticancer activity and significantly reduced toxicity towards normal cells in comparison to unmodified POMs. Although the antitumor activity of POMs is well documented, their mechanisms of action are still not well understood. In this Review, an overview is given of the cytotoxic effects of POMs with a special focus on POM-based hybrid and nanocomposite structures. Furthermore, we aim to provide proposed mode of actions and to identify molecular targets. POMs are expected to develop into the next generation of anticancer drugs that selectively target cancer cells while sparing healthy cells.
Collapse
Affiliation(s)
- Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Manuel Aureliano
- Universidade do AlgarveFaculdade de Ciências e Tecnologia (FCT), CCMar8005-139FaroPortugal
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
15
|
Jahani S, Noroozifar M, Khorasani-Motlagh M, Torkzadeh-Mahani M, Adeli-Sardou M. In vitro cytotoxicity studies of parent and nanoencapsulated Holmium-2,9-dimethyl-1,10-phenanthroline complex toward fish-salmon DNA-binding properties and antibacterial activity. J Biomol Struct Dyn 2019; 37:4437-4449. [DOI: 10.1080/07391102.2018.1557077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Meissam Noroozifar
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advance Technology, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Department of Biotechnology, Institute of Science, High Technology & Environmental Science, Graduate University of Advance Technology, Kerman, Iran
| |
Collapse
|
16
|
Dianat S, Hatefi-Mehrjardi A, Mahmoodzadeh K. Electrochemical behavior of inorganic–organic hybrid polyoxometalate ((Cys)3[PW12O40]) nanostructure self-assembled monolayer on polycrystalline gold electrode surfaces. NEW J CHEM 2019. [DOI: 10.1039/c8nj05721d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic effect of HPW and Cys enhanced electrochemical activity of Au-(Cys)PW electrode.
Collapse
Affiliation(s)
- Somayeh Dianat
- Department of Chemistry, Faculty of Sciences, University of Hormozgan
- Bandar Abbas 71961
- Iran
| | - Abdolhamid Hatefi-Mehrjardi
- Department of Chemistry, Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Sirjan Payame Noor University
- Sirjan
| | - Kourosh Mahmoodzadeh
- Department of Chemistry, Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Sirjan Payame Noor University
- Sirjan
| |
Collapse
|
17
|
Bijelic A, Aureliano M, Rompel A. Im Kampf gegen Krebs: Polyoxometallate als nächste Generation metallhaltiger Medikamente. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803868] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aleksandar Bijelic
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| | - Manuel Aureliano
- Universidade do AlgarveFaculdade de Ciências e Tecnologia (FCT), CCMar 8005-139 Faro Portugal
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische Chemie Althanstraße 14 1090 Wien Österreich
| |
Collapse
|
18
|
The Anti-Proliferation Activity and Mechanism of Action of K 12[V 18O 42(H₂O)]∙6H₂O on Breast Cancer Cell Lines. Molecules 2017; 22:molecules22091535. [PMID: 28895907 PMCID: PMC6151505 DOI: 10.3390/molecules22091535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022] Open
Abstract
Polyoxometalates (POMs) are inorganic clusters that possess potential anti-bacterial, anti-viral, and anti-tumor activities. Herein, the in vitro anti-proliferation activities of K12[V18O42(H2O)]∙6H2O (V18) have been investigated on the MCF-7 and MDA-MB-231 cell lines. The results indicated that V18 could inhibit the proliferation of MCF-7 (IC50, 11.95 μM at 48 h) in a dose-dependent manner compared to the positive control, 5-fluorouracil (5-Fu, p < 0.05). The anti-proliferation activity of V18 might be mediated by arrest of the MCF-7 cells in the G2/M phase and induction of apoptosis and necrosis. Moreover, V18 can effectively quench the fluorescence of ctDNA. The binding mode between them may be groove or outside stacking binding. V18 can also effectively quench the intrinsic fluorescence of bovine serum albumin (BSA) and human serum albumin (HSA) via static quenching, and changed the conformation of BSA and HSA.
Collapse
|
19
|
Liu H, Dong Y, Wu J, Chen C, Liu D, Zhang Q, Du S. Evaluation of interaction between imidazolium-based chloride ionic liquids and calf thymus DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1-7. [PMID: 27203596 DOI: 10.1016/j.scitotenv.2016.05.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 05/23/2023]
Abstract
With ionic liquids (ILs) being widely used, the toxicity of many ILs has been studied and verified. However the mechanism underlying the interaction between ILs and DNA needs to be investigated. In this study, the interaction of three imidazolium-based ILs ([C8mim]Cl, [C12mim]Cl, and [C16mim]Cl) with calf thymus DNA (ctDNA) was investigated by UV absorption spectroscopy and fluorescence spectroscopy. An intense interaction between [Cnmim]Cl and ctDNA was observed, involving a hypochromic effect or even a hyperchromic effect, in the UV absorption spectrum of ctDNA at 260nm. The Tm of ctDNA increased over 10°C after binding with [Cnmim]Cl, and the KSV values of [Cnmim]Cl-ctDNA quenched by potassium iodide (KI) were lower than those of [Cnmim]Cl. The fluorescence intensity of ctDNA-ethidium bromide (EB) was gradually quenched as the [Cnmim]Cl concentration increased. The results indicated that ctDNA interacted with [Cnmim]Cl through an intercalation binding mode. The mechanism of fluorescence quenching of [Cnmim]Cl with ctDNA involved static quenching. The binding constant between [Cnmim]Cl and ctDNA were 1443, 11169, and 67189, and the number of binding sites were 0.89, 1.10, and 1.27 at 298K, for [C8mim]Cl, [C12mim]Cl, and [C16mim]Cl, respectively. The results indicated that the intercalation binding between the three [Cnmim]Cl and ctDNA increased with increasing IL-alkyl chain length. These results will aid in the understanding of the mechanism of toxicity and of the biologically mediated environmental processes of ILs.
Collapse
Affiliation(s)
- Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jian Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Caidong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Dingdong Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
20
|
Dianat S, Bordbar AK, Tangestaninejad S, Zarkesh-Esfahani SH, Habibi P, Abbasi Kajani A. ctDNA interaction of Co-containing Keggin polyoxomolybdate and in vitro antitumor activity of free and its nano-encapsulated derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0906-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
In vitro antitumor activity of free and nano-encapsulated Na5[PMo10V2O40]·nH2O and its binding properties with ctDNA by using combined spectroscopic methods. J Inorg Biochem 2015; 152:74-81. [PMID: 26360100 DOI: 10.1016/j.jinorgbio.2015.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 11/21/2022]
Abstract
Free and nanosized starch and lipid encapsulated Na5[PMo10V2O40]·nH2O complexes (abbreviated as PMoV, SEP and LEP, respectively) have been prepared and structurally characterized by Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma (ICP) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The results show that the PMoV retains its parent structure after encapsulation by starch and lipid nanoparticles. The in vitro antitumor activity of PMoV in its free and nano-encapsulated forms was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay that was carried out on two types of human cancer cells, MCF-7 (breast cancer cells) and HEK-293 (Human Embryonic Kidney). The results represent the enhancement of cell penetration and antitumor activity of PMoV due to its encapsulation in starch or lipid nanoparticles. However, this observed enhancement for the lipid relative to the starch nanocapsule can be attributed to its smaller size. In order to investigate the molecular nature of antitumor activity, the binding properties of PMoV with calf thymus DNA (ctDNA) were also comprehensively evaluated using UV-vis absorption spectroscopy, fluorescence quenching and fluorescence Scatchard plots. The results rule out the intercalating binding mode and propose the groove or outside stacking binding for PMoV. However, a biphasic binding behavior that is due to the change in the binding mode was observed by varying of [PMoV]/[ctDNA] mole ratio. The results of cell culture assay and DNA binding experiments represent that the rate of cell penetration is more important than DNA binding affinity in the antitumor activity for POM.
Collapse
|
22
|
In VitroAntitumor Activity of a Keggin Vanadium-Substituted Polyoxomolybdate and Its ctDNA Binding Properties. J CHEM-NY 2015. [DOI: 10.1155/2015/753751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A Keggin vanadium-substituted polyoxomolybdate, K5PMo10V2O40(PMo10V2), has been synthesized and it’s antitumor effect against Hela cells was investigated. The calf thymus DNA (ctDNA) binding ability of PMo10V2was also evaluated by UV-Vis absorption spectra and fluorescence spectra. The identity and high purity of PMo10V2was confirmed by elemental analysis and IR analysis. And the antitumor activity test of PMo10V2was carried out on Hela cancer cells line by MTT assay. The results of MTT assay show that PMo10V2significantly reduced the viability of Hela cells in a dose-dependent manner and exhibited stronger inhibitory activity against Hela cells at an IC50of 800 μg/mL, which is more effective than the positive control, 5-Fu(P<0.05). The results of the UV-Vis absorption spectra and fluorescence spectra indicated the groove or outside stacking binding between PMo10V2and ctDNA. These results show that the antitumor activity of PMo10V2may be caused by the interactions between DNA and PMo10V2.
Collapse
|