1
|
Liu Z, Shan S, Kang K, Wang S, Yong H, Sun Y, Bai Y, Song F. Mitochondrial transfer of α-synuclein mediates carbon disulfide-induced mitochondrial dysfunction and neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116613. [PMID: 38908057 DOI: 10.1016/j.ecoenv.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Exposure to carbon disulfide (CS2) is a recognized risk factor in the pathogenesis of Parkinson's disease, yet the underlying mechanisms of deleterious effects on mitochondrial integrity have remained elusive. Here, through establishing CS2 exposure models in rat and SH-SY5Y cells, we demonstrated that highly expressed α-synuclein (α-Syn) is transferred to mitochondria via membrane proteins such as Tom20 and leads to mitochondrial dysfunction and mitochondrial oxidative stress, which ultimately causes neuronal injury. We first found significant mitochondrial damage and oxidative stress in CS2-exposed rat midbrain and SH-SY5Y cells and showed that mitochondrial oxidative stress was the main factor of mitochondrial damage by Mitoquinone intervention. Further experiments revealed that CS2 exposure led to the accumulation of α-Syn in mitochondria and that α-Syn co-immunoprecipitated with mitochondrial membrane proteins. Finally, the use of an α-Syn inhibitor (ELN484228) and small interfering RNA (siRNA) effectively mitigated the accumulation of α-Syn in neurons, as well as the inhibition of mitochondrial membrane potential, caused by CS2 exposure. In conclusion, our study identifies the translocation of α-Syn to mitochondria and the impairment of mitochondrial function, which has important implications for the broader understanding and treatment of neurodegenerative diseases associated with environmental toxins.
Collapse
Affiliation(s)
- Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Kang
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Yong
- Qingdao Municipal Center For Disease Control&Prevention, Qingdao, Shandong 266033, China
| | - Yanan Sun
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Zhao R, Chen Y, Liang Y. Bioorthogonal Delivery of Carbon Disulfide in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202400020. [PMID: 38752888 DOI: 10.1002/anie.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 06/27/2024]
Abstract
Carbon disulfide (CS2) is an environmental contaminant, which is deadly hazardous to the workers under chronic or acute exposure. However, the toxicity mechanisms of CS2 are still unclear due to the scarcity of biocompatible donors, which can release CS2 in cells. Here we developed the first bioorthogonal CS2 delivery system based on the "click-and-release" reactions between mesoionic 1,3-thiazolium-5-thiolates (TATs) and strained cyclooctyne exo-BCN-OH. We successfully realized intracellular CS2 release and investigated the causes of CS2-induced hepatotoxicity, including oxidative stress, proteotoxic stress and copper-dependent cell death. It is found that CS2 can be copper vehicles bypassing copper transporters after reacting with nucleophiles in cytoplasm, and extra copper supplementation will exacerbate the loss of homeostasis of cells and ultimately cell death. These findings inspired us to explore the anticancer activity of CS2 in combination with copper by introducing a copper chelating group in our CS2 delivery system.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Li Y, Lin S, Xu C, Zhang P, Mei X. Triggering of Autophagy by Baicalein in Response to Apoptosis after Spinal Cord Injury: Possible Involvement of the PI3K Activation. Biol Pharm Bull 2018; 41:478-486. [DOI: 10.1248/bpb.b17-00768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuanlong Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Sen Lin
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Chang Xu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Peng Zhang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
4
|
Wang S, Irving G, Jiang L, Wang H, Li M, Wang X, Han W, Xu Y, Yang Y, Zeng T, Song F, Zhao X, Xie K. Oxidative Stress Mediated Hippocampal Neuron Apoptosis Participated in Carbon Disulfide-Induced Rats Cognitive Dysfunction. Neurochem Res 2016; 42:583-594. [PMID: 27900598 DOI: 10.1007/s11064-016-2113-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/06/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Occupational exposure to carbon disulfide (CS2) exhibits central nervous systems toxicity. But the mechanism is unclear. The present study was designed to investigate the relationship between the CNS damage and cognitive dysfunction caused by CS2, and eventually reveal the possible oxidative-related mechanism of hippocampus pathological changes in CS2 exposed rats. Male Wistar rats were administrated with CS2 at dosage of 200, 400 and 600 mg/kg for consecutive 20 days, respectively. Cognitive performances were evaluated by Morris water maze tests. Thionin and immunohistochemical analysis were used to investigate the hippocampal neuron damage, and the expression of apoptosis related proteins (cleaved-caspase 3, Bax and Bcl-2) were detected to explore the possible mechanisms of neuronal loss. Oxidative stress parameters were checked by commercial assay kits. Rats exposed to CS2 displayed cognitive dysfunction manifested as decreased spatial learning ability and memory lesion. Pathological changes and significant neuron loss were observed in hippocampus, especially in CA1 and CA3 sub-regions. Mitochondria-dependent apoptosis pathway was implicated in the CS2-induced neuronal loss which was demonstrated by the up-regulation of cleaved-caspase 3 and Bax accompanied with down-regulation of Bcl-2. Furthermore, extensive oxidative stress induced by CS2 was also revealed by the measurement of ROS, RNS, MDA, GSH&GSSG and antioxidant enzymes (CAT, T-SOD, and GSH-Px). Our study suggested that oxidative stress mediated hippocampal neuron apoptosis might play an important role in CS2 induced CNS damage and cognitive dysfunction.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Gleniece Irving
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Yongpeng Xu
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Yilin Yang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|