1
|
Hoang NMH, Park K. Applications of Tert-Butyl-Phenolic Antioxidants in Consumer Products and Their Potential Toxicities in Humans. TOXICS 2024; 12:869. [PMID: 39771084 PMCID: PMC11679822 DOI: 10.3390/toxics12120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Tert-butyl phenolic antioxidants (TBP-AOs) are employed to inhibit oxidation and function as stabilizers and protectants in a broad spectrum of consumer products, such as food packaging, adhesives, lubricants, plastics, and cosmetics. The extensive utilization of TBP-AOs results in human exposure through various pathways. Furthermore, some TBP-AOs have been identified as potential endocrine disruptors and may cause liver and lung damage, as well as allergic reactions. Considering their varied applications and potential toxicity, a detailed evaluation of their safety profiles is imperative. However, existing research is often segmented and tends to focus narrowly on specific compounds. Consequently, this review collates recent data on TBP-AOs regarding their production, exposure, and toxicity, incorporating different databases and prior studies, as well as predictions of toxicity using ADMET. Our review strives to offer a comprehensive overview of the characteristics and health effects of TBP-AOs to guide future research and inform policy decisions.
Collapse
Affiliation(s)
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea;
| |
Collapse
|
2
|
Milillo C, Falcone L, Di Carlo P, Aruffo E, Del Boccio P, Cufaro MC, Patruno A, Pesce M, Ballerini P. Ozone effect on the inflammatory and proteomic profile of human macrophages and airway epithelial cells. Respir Physiol Neurobiol 2023; 307:103979. [PMID: 36243292 DOI: 10.1016/j.resp.2022.103979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Ozone (O3) is one of the most harmful urban pollutants, but its biological mechanisms have not been fully elucidated yet. Human bronchial epithelial cells (HBEpC) and human macrophage cells (differentiated human monocytic cell line) were exposed to O3 at the concentration of 240 μg/m3 (120 ppb), corresponding to the European Union alert threshold. Cell viability, reactive oxygen species (ROS) production, and pro-inflammatory cytokines release (IL-8 and TNF-α) were evaluated. Results indicated that O3 exposure increases ROS production in both cell types and enhances cytokines release in macrophages. O3 stimulated IL-8 and TNF-α in HBEpC when the cells were pretreated with Lipopolysaccharide, used to mimic a pre-existing inflammatory condition. Proteomics analysis revealed that, in HBEpC, O3 caused the up-regulation of aldo-keto reductase family 1 member B10, a recognized critical protein in lung carcinogenesis. In conclusion, our results show that 120 ppb O3 can lead to potential damage to human health suggesting the need for a revision of the actual alert levels.
Collapse
Affiliation(s)
- C Milillo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Falcone
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy
| | - P Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - E Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - P Del Boccio
- Department of Pharmacy, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M C Cufaro
- Department of Pharmacy, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A Patruno
- Department of Medicine and Aging Sciences, University G. d'Annunzio, 66100 Chieti, Italy
| | - M Pesce
- Department of Medicine and Aging Sciences, University G. d'Annunzio, 66100 Chieti, Italy.
| | - P Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, University G. d'Annunzio, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Meng X, Xia C, Ye Q, Nie X. tert-Butyl-p-benzoquinone induces autophagy by inhibiting the Akt/mTOR signaling pathway in RAW 264.7 cells. Food Funct 2020; 11:4193-4201. [PMID: 32352125 DOI: 10.1039/d0fo00281j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
tert-Butyl-p-benzoquinone (TBBQ), a metabolite of tert-butylhydroquinone from food, has cytotoxicity, the underlying mechanism of which is not clear. In this study, the viability of RAW 264.7 cells exposed to TBBQ at concentrations of 0.5-10 μg mL-1 was assayed by MTT. Results suggest that TBBQ decreased the viability in a dose-dependent manner. Monodansylcadaverine (MDC) staining results indicate the occurrence of autophagy induced by TBBQ, which was manifested by activation of LC3-II concurrent with the increased levels of Beclin1 and reduced levels of p62. Elevated lipid peroxide and decreased SOD activity by TBBQ exposure suggest the overproduction of ROS, which may account for the increase in the genotoxic stress protein p53. Both upregulation of p53 and reduction of Akt levels inhibited mTOR, which activated autophagy. Addition of 3-MA counteracted the impact of TBBQ on ATG proteins and cell viability. All of these results suggest that TBBQ induces autophagy of RAW 264.7 cells principally by inhibition of the Akt/mTOR signaling pathway, and they implicate ROS in this regulation.
Collapse
Affiliation(s)
- Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | | | | | | |
Collapse
|
4
|
Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochem Biophys Res Commun 2018; 497:437-443. [DOI: 10.1016/j.bbrc.2018.02.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/06/2023]
|
5
|
Endo S, Xia S, Suyama M, Morikawa Y, Oguri H, Hu D, Ao Y, Takahara S, Horino Y, Hayakawa Y, Watanabe Y, Gouda H, Hara A, Kuwata K, Toyooka N, Matsunaga T, Ikari A. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J Med Chem 2017; 60:8441-8455. [PMID: 28976752 DOI: 10.1021/acs.jmedchem.7b00830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is overexpressed in several extraintestinal cancers, particularly in non-small-cell lung cancer, where AKR1B10 is a potential diagnostic marker and therapeutic target. Selective AKR1B10 inhibitors are required because compounds should not inhibit the highly related aldose reductase that is involved in monosaccharide and prostaglandin metabolism. Currently, 7-hydroxy-2-(4-methoxyphenylimino)-2H-chromene-3-carboxylic acid benzylamide (HMPC) is known to be the most potent competitive inhibitor of AKR1B10, but it is nonselective. In this study, derivatives of HMPC were synthesized by removing the 4-methoxyphenylimino moiety and replacing the benzylamide with phenylpropylamide. Among them, 4c and 4e showed higher AKR1B10 inhibitory potency (IC50 4.2 and 3.5 nM, respectively) and selectivity than HMPC. The treatments with the two compounds significantly suppressed not only migration, proliferation, and metastasis of lung cancer A549 cells but also metastatic and invasive potentials of cisplatin-resistant A549 cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Miho Suyama
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshinori Ao
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Satoyuki Takahara
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama , Toyama 930-0194, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University , Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu 501-1193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan.,Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| |
Collapse
|
6
|
Kim J, Shin SH, Ko YE, Miki T, Bae HM, Kang JK, Kim JW. HX-1171, a Novel Nrf2 Activator, Induces NQO1 and HMOX1 Expression. J Cell Biochem 2017; 118:3372-3380. [PMID: 28300285 DOI: 10.1002/jcb.25993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 01/18/2023]
Abstract
HX-1171 (1-O-hexyl-2,3,5-trimethylhydroquinone) is a novel synthesized vitamin E derivative, which reportedly has positive effects on various diseases and conditions, such as liver fibrosis, hepatic cirrhosis, and cancer. In this study, we analyzed the transcriptional activity induced by HX-1171. Results from reverse transcription polymerase chain reaction and promoter assays reveal that HX-1171 increased the expression of NQO1 and HMOX1, encoding antioxidant-related enzymes, in A549 human lung epithelial cells. The activity of nuclear factor-E2-related factor (Nrf2), a key transcriptional factor for antioxidative enzymes, was examined in HX-1171-treated cells. Confocal microscopy and Western blotting showed that HX-1171 effectively induced the nuclear translocation and transcriptional activity of Nrf2. We conclude that HX-1171, a novel Nrf2 activator, may be a promising therapeutic agent for oxidative stress-induced diseases. J. Cell. Biochem. 118: 3372-3380, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jimin Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyun Shin
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young-Eun Ko
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | - Heung-Mo Bae
- Biotoxtech Co., Ltd, Cheongju, Republic of Korea
| | - Jong-Koo Kang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Wha Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
7
|
de Melo BAG, Motta FL, Santana MHA. Humic acids: Structural properties and multiple functionalities for novel technological developments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 62:967-74. [PMID: 26952503 DOI: 10.1016/j.msec.2015.12.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach.
Collapse
Affiliation(s)
- Bruna Alice Gomes de Melo
- Development of Biotechnological Processes Laboratory, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, São Paulo, Brazil
| | - Fernanda Lopes Motta
- Development of Biotechnological Processes Laboratory, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, São Paulo, Brazil
| | - Maria Helena Andrade Santana
- Development of Biotechnological Processes Laboratory, School of Chemical Engineering, University of Campinas, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|