1
|
Kirkland D, Kovochich M, More SL, Murray FJ, Monnot AD, Miller JV, Jaeschke H, Jacobson-Kram D, Deore M, Pitchaiyan SK, Unice K, Eichenbaum G. A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 122:104892. [PMID: 33592196 DOI: 10.1016/j.yrtph.2021.104892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.
Collapse
|
2
|
Jena AB, Samal RR, Kumari K, Pradhan J, Chainy GBN, Subudhi U, Pal S, Dandapat J. The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: A biophysical study. Int J Biol Macromol 2020; 167:871-880. [PMID: 33181220 DOI: 10.1016/j.ijbiomac.2020.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
The current communication reports the inhibitory effect of para-benzoquinone (p-BQ) on the structure and function of bovine liver catalase (BLC), a vital antioxidant enzyme. Both BLC and p-BQ were dissolved in respective buffers and the biophysical interaction was studied at physiological concentrations. For the first time our data reveals an enthalpy-driven interaction between BLC and p-BQ which is due to hydrogen bonding and van der Waals interactions. The binding affinity of p-BQ with BLC is nearly 2.5 folds stronger in MOPS buffer than Phosphate buffer. Importantly, the binding affinity between BLC and p-BQ was weak in HEPES buffer as compared to other buffers being the strongest in Tris buffer. Molecular docking studies reveal that binding affinity of p-BQ with BLC differ depending upon the nature of buffers rather than on the participating amino acid residues of BLC. This is further supported by the differential changes in secondary structures of BLC. The p-BQ-induced conformational change in BLC was evident from the reduced BLC activity in presence of different buffers in the following order, Phosphate>MOPS>Tris>HEPES. The absorbance peak of BLC was gradually increased and fluorescence spectra of BLC were drastically decreased when BLC to p-BQ molar ratio was incrementally enhanced from 0 to 10,000 times in presence of all buffers. Nevertheless, the declined activity of BLC was positively correlated with the reduced fluorescence and negatively correlated with the enhanced absorbance. Electrochemical study with cyclic voltammeter also suggests a direct binding of p-BQ with BLC in presence of different buffers. Thus, p-BQ-mediated altered secondary structure in BLC results into compromised activity of BLC.
Collapse
Affiliation(s)
- Atala B Jena
- Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Rashmi R Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| | - Kanchan Kumari
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Jyotsnarani Pradhan
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Gagan B N Chainy
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Umakanta Subudhi
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India.
| | - Satyanarayan Pal
- Post Graduate Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jagnehswar Dandapat
- Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
3
|
Sestili P, Fimognari C. Paracetamol-Induced Glutathione Consumption: Is There a Link With Severe COVID-19 Illness? Front Pharmacol 2020; 11:579944. [PMID: 33117175 PMCID: PMC7577213 DOI: 10.3389/fphar.2020.579944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
COVID-19 pandemic is posing an unprecedented sanitary threat: antiviral and host-directed medications to treat the disease are urgently needed. A great effort has been paid to find drugs and treatments for hospitalized, severely ill patients. However, medications used for the domiciliary management of early symptoms, notwithstanding their importance, have not been and are not presently regarded with the same attention and seriousness. In analogy with other airways viral infections, COVID-19 patients in the early phase require specific antivirals (still lacking) and non-etiotropic drugs to lower pain, fever, and control inflammation. Non-steroidal anti-inflammatory drugs (NSAIDs) and paracetamol (PAC) are widely used as non-etiotropic agents in common airways viral infections and hence are both theoretically repurposable for COVID-19. However, a warning from some research reports and National Authorities raised NSAIDs safety concerns because of the supposed induction of angiotensin-converting enzyme 2 (ACE2) levels (the receptor used by SARS-CoV2 to enter host airways cells), the increased risk of bacterial superinfections and masking of disease symptoms. As a consequence, the use of NSAIDs was, and is still, discouraged while the alternative adoption of paracetamol is still preferred. On the basis of novel data and hypothesis on the possible role of scarce glutathione (GSH) levels in the exacerbation of COVID-19 and of the GSH depleting activity of PAC, this commentary raises the question of whether PAC may be the better choice.
Collapse
Affiliation(s)
- Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Università degli Studi di Bologna, Rimini, Italy
| |
Collapse
|
4
|
Liu X, Lv H, Guo Y, Teka T, Wang X, Huang Y, Han L, Pan G. Structure-Based Reactivity Profiles of Reactive Metabolites with Glutathione. Chem Res Toxicol 2020; 33:1579-1593. [PMID: 32347096 DOI: 10.1021/acs.chemrestox.0c00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic agents can be transformed into reactive metabolites under the action of various metabolic enzymes in vivo and then covalently combine with biological macromolecules (such as protein or DNA), resulting in increasing toxicity. The screening of reactive metabolites in drug discovery and development stages and monitoring of biotransformation in post-market drugs has become an important research field. Generally, reactive metabolites are electrophilic and can be captured by small nucleophiles. Glutathione (GSH) is a small peptide composed of three amino acids (i.e., glutamic acid, cysteine, and glycine). It has a thiol group which can react with electrophilic groups of reactive metabolic intermediates (such as benzoquinone, N-acetyl-p-benzoquinoneimine, and Michael acceptor) to form a stable binding conjugate. This paper aims to provide a review on structure-based reactivity profiles of reactive metabolites with GSH. Furthermore, this review also reveals the relationship between drugs' molecular structures and reactive metabolic toxicity from the perspective of metabolism, giving a reference for drug design and development.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Lv
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| |
Collapse
|
5
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|
6
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Karabacak M, Kanbur M, Eraslan G, Siliğ Y, Soyer Sarıca Z, Tekeli MY, Taş A. The effects of colostrum on some biochemical parameters in the experimental intoxication of rats with paracetamol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23897-23908. [PMID: 29881964 DOI: 10.1007/s11356-018-2382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In the current study, the possible prophylactic and therapeutic effects of colostrum (COL) on acute organ injury caused by paracetamol (PAR) in rats were evaluated. Within the scope of this study, a 2-month-old male (150-200 g) 70 Wistar Albino rat was used and a total of seven groups were designed. The first group (CNT) was maintained for control purposes. The second group (COL-1) was given COL for 1 day, at a dose of 500 mg/kg at 6-h intervals, and blood and tissue sampling was performed at 24 h. The third group (COL-7) received COL for 7 days, at a dose of 500 mg/kg at 6-h intervals on day 1 and at a daily dose of 500 mg/kg on the following days, and blood and tissue samples were taken at the end of seventh day. The fourth group (PAR-1) was administered with PAR at a dose of 1.0 g/kg bw and was blood and tissue sampled at 24 h. The fifth group (PAR-7) received PAR at a dose of 1.0 g/kg bw on day 1 and was blood and tissue was removed at the end of day 7. The sixth group (PAR+COL-1) was administered with a combination of PAR (1 g/kg bw) and COL (500 mg/kg at 6-h intervals), and blood and tissue samples were collected at 24 h. The seventh group (PAR+COL-7) received 1.0 g/kg bw of PAR on day 1 and was given COL throughout the 7-day study period (at a dose of 500 mg/kg at 6-h intervals on day 1 and at a daily dose of 500 mg/kg on the following days). In the seventh group, blood and tissue samples were taken at the end of seventh day. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), glucose, creatinine, triglyceride, total bilirubin, total protein and albumin levels/activities were analysed in the serum samples. The malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) levels/activities, known as oxidative stress parameters, were assayed for tissue homogenates and blood (erythrocytes/plasma); in addition, enzyme activities of GSH S-transferase (GST), cytochrome P4502E1 (CYP2E1), NADH-cytochrome b5 reductase (CYTB5), glucose-6-phosphate dehydrogenase (G6PD), NADPH-cytochrome P450 C reductase (CYTC) and glutathione (GSH) levels/activities defined as drug metabolising parameters were measured in liver homogenates. In result, it was determined that PAR caused significant alterations in some biochemical and lipid peroxidation parameters and the activities/levels of drug metabolising parameters in the liver and that COL normalised some of these parameters and reduced PAR-induced tissue damage.
Collapse
Affiliation(s)
- Mürsel Karabacak
- Safiye Çıkrıkçıoğlu Vocational College, Laboratory and Veterinary Health Department, Erciyes University, Kayseri, Turkey
| | - Murat Kanbur
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| | - Yavuz Siliğ
- Faculty of Medicine, Department of Biochemistry, Cumhuriyet University, Sivas, Turkey
| | - Zeynep Soyer Sarıca
- Experimental Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Muhammet Yasin Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey
| | - Ayça Taş
- Faculty of Health Sciences, Department of Nutrition and Diet, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
9
|
Pereira BVR, Matus GN, Costa MJ, Santos ACAD, Silva-Zacarin ECM, do Carmo JB, Nunes B. Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14899-14910. [PMID: 29546518 DOI: 10.1007/s11356-018-1699-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Over time, many pollutants of anthropogenic origin have caused the contamination of aquatic ecosystems. Among several characteristics, these compounds can reach the trophic chain, causing deleterious interactions with the biota. Pharmaceutical substances can be included in this scenario as emerging contaminants that reach the aquatic environment because of direct human and veterinary usage, and release by industrial effluents, as well as through domestic dumping of surplus drugs. The effects of these compounds on exposed organisms have been studied since the 1990s, but ecotoxicological data for such chemicals are still scarce especially concerning aquatic organisms from tropical regions. Paracetamol and propranolol were selected for this study since they are frequently found in surface waters. Paracetamol is a drug used as analgesic and antipyretic, while propranolol, a β-blocker, is used in the treatment of hypertension. The objective of this study was to assess the toxic effects of these substances on the neotropical freshwater fish Phalloceros harpagos after acute (96 h) and chronic (28 days) exposures. In order to understand the effects of these drugs on P. harpagos, biochemical markers were selected, including the enzymes involved in oxidative stress, xenobiotic metabolism, and neurotransmission (catalase, glutathione-S-transferase, and cholinesterase activities, respectively). After acute exposure, no significant alterations were observed for catalase activity, suggesting the absence of oxidative stress. On the contrary, significant alterations in glutathione-S-transferases activity were described for the higher concentrations of both pharmaceuticals after acute exposure. In addition, acute exposure to paracetamol caused a significant increase of cholinesterase activity. None of the tested pharmaceuticals caused significant changes in catalase or cholinesterase activities after chronic exposure. Glutathione S-transferases activity was significantly increased for propranolol following chronic exposure, indicating the potential involvement of phase II detoxification pathway.
Collapse
Affiliation(s)
- Beatriz V R Pereira
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Gregorio Nolazco Matus
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Monica Jones Costa
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - André Cordeiro Alves Dos Santos
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Elaine C M Silva-Zacarin
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Biologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Janaina Braga do Carmo
- Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Rodovia João Leme dos Santos km 110, Itinga, Sorocaba, SP, 18052-780, Brazil
| | - Bruno Nunes
- Departamento de Biologia/CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Li R, Guo C, Wu X, Huang Z, Chen J. FGF21 functions as a sensitive biomarker of APAP-treated patients and mice. Oncotarget 2018; 8:44440-44446. [PMID: 28591702 PMCID: PMC5546492 DOI: 10.18632/oncotarget.17966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/06/2017] [Indexed: 01/20/2023] Open
Abstract
Acetaminophen (APAP) is a common medication that induces hepatocellular damage in a time- or dose-dependent manner. Fibroblast growth factor 21 (FGF21) exerts a series of biological effects, including cellular repair. Compared to clinical diagnosis parameters, we aimed to evaluate whether FGF21 can serve as a sensitive biomarker for APAP-induced liver impairment. In the present study, we discussed comparable data from APAP-treated patients and parallelly established APAP-exposed mice for investigation. The resulting human serological data showed that APAP-treated patients have a visible reduction of FGF21 expression in undetected liver impairment of clinical diagnosis. In the animal study, APAP-exposed livers exhibited normal metabolic functions and liver functions, as revealed by biochemical test and histopathological examination. Endogenous FGF21 concentrations in APAP-treated mice were decreased in sera and liver cells. Moreover, comparable immunoassay data showed that hepatocellular FGF21 expression was reduced in a time-dependent manner. Taken together, these findings elucidate the involvement of abnormal FGF21 expression in early APAP-induced liver impairment. Interestingly, FGF21 may be a promising biomarker of APAP-exposed livers.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guangxi, Guilin 541004, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, PR China
| | - Xinmou Wu
- Department of Pharmacy, Guangxi Medical University, Guangxi, Nanning 530021, PR China
| | - Zhaoquan Huang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guangxi, Guilin 541004, PR China.,Department of Pathology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541004, PR China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guangxi, Guilin 541004, PR China
| |
Collapse
|
11
|
Rowe C, Shaeri M, Large E, Cornforth T, Robinson A, Kostrzewski T, Sison-Young R, Goldring C, Park K, Hughes D. Perfused human hepatocyte microtissues identify reactive metabolite-forming and mitochondria-perturbing hepatotoxins. Toxicol In Vitro 2017; 46:29-38. [PMID: 28919358 DOI: 10.1016/j.tiv.2017.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Hepatotoxins cause liver damage via many mechanisms but the formation of reactive metabolites and/or damage to liver mitochondria are commonly implicated. We assess 3D human primary hepatocyte microtissues as a platform for hepatotoxicity studies with reactive metabolite-forming and mitochondria-perturbing compounds. We show that microtissues formed from cryopreserved human hepatocytes had bile canaliculi, transcribed mRNA from genes associated with xenobiotic metabolism and expressed functional cytochrome P450 enzymes. Hierarchical clustering was used to distinguish dose-dependent hepatotoxicity elicited by clozapine, fialuridine and acetaminophen (APAP) from control cultures and less liver-damaging compounds, olanzapine and entecavir. The regio-isomer of acetaminophen, N-acetyl-meta-aminophenol (AMAP) clustered with the hepatotoxic compounds. The principal metabolites of APAP were formed and dose-dependent changes in metabolite profile similar to those seen in patient overdose was observed. The toxicological profile of APAP was indistinguishable from that of AMAP, confirming AMAP as a human hepatotoxin. Tissue oxygen consumption rate was significantly decreased within 2h of exposure to APAP or AMAP, concomitant with glutathione depletion. These data highlight the potential utility of perfused metabolically functional human liver microtissues in drug development and mechanistic toxicology.
Collapse
Affiliation(s)
- Cliff Rowe
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Mohsen Shaeri
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Emma Large
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Terri Cornforth
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Angela Robinson
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Tomasz Kostrzewski
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Kevin Park
- MRC Centre for Drug Safety Science, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David Hughes
- CN Bio Innovations Limited, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK.
| |
Collapse
|
12
|
He X, Li L, Fang Y, Shi W, Li X, Ma H. In vivo imaging of leucine aminopeptidase activity in drug-induced liver injury and liver cancer via a near-infrared fluorescent probe. Chem Sci 2017; 8:3479-3483. [PMID: 28507720 PMCID: PMC5418645 DOI: 10.1039/c6sc05712h] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/18/2017] [Indexed: 12/22/2022] Open
Abstract
The liver, a main detoxification organ, has evolved a complex enzymatic system to respond to multiple pathological conditions, in which leucine aminopeptidase (LAP) has been reported to participate in detoxifying cisplatin in hepatoma cells and contribute to the intrinsic drug resistance. In vivo imaging of LAP activity in liver disease models is thus helpful to further understand the function of LAP in detoxification and medicine, but such an imaging approach is still lacking. Herein, we develop a selective and sensitive near-infrared fluorescent probe (HCAL) for this purpose. Using the probe, combined with confocal fluorescence imaging, we disclose the upregulations of LAP in acetaminophen-induced liver injury and tumor-bearing mice models. Supplementary acetylcysteine can suppress this upregulation, revealing that the LAP increase may be connected with a deficiency in biothiols. Moreover, HCAL has been used to image LAP in hepatoma cells, tumor tissues and xenograft tumor mice models successfully. These results demonstrate that HCAL may be a promising tool for studying the function of LAP in LAP-associated liver diseases.
Collapse
Affiliation(s)
- Xinyuan He
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Lihong Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Yu Fang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . ;
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
13
|
Beh BK, Mohamad NE, Yeap SK, Lim KL, Ho WY, Yusof HM, Sharifuddin SA, Jamaluddin A, Long K, Alitheen NB. Polyphenolic profiles and the in vivo antioxidant effect of nipa vinegar on paracetamol induced liver damage. RSC Adv 2016. [DOI: 10.1039/c6ra13409b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nipa vinegar, which is rich in gallic acid and protocatechuic acid, has reverted the paracetamol-induced liver damage in mice by reduction of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Boon Kee Beh
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
- Biotechnology Research Centre
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology
- Faculty of Biotechnology and Biomolecular Science
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Kian Lam Lim
- Faculty of Medicine and Health Sciences
- Universiti Tunku Abdul Rahman
- Sungai Long Campus
- Kajang 43000
- Malaysia
| | - Wan Yong Ho
- School of Biomedical Sciences
- The University of Nottingham Malaysia Campus
- 43500 Semenyih
- Malaysia
| | | | - Shaiful Adzni Sharifuddin
- Biotechnology Research Centre
- Malaysian Agricultural Research and Development Institute (MARDI)
- Serdang
- Malaysia
| | - Anisah Jamaluddin
- Biotechnology Research Centre
- Malaysian Agricultural Research and Development Institute (MARDI)
- Serdang
- Malaysia
| | - Kamariah Long
- Biotechnology Research Centre
- Malaysian Agricultural Research and Development Institute (MARDI)
- Serdang
- Malaysia
| | - Noorjahan Banu Alitheen
- Institute of Bioscience
- Universiti Putra Malaysia
- Serdang
- Malaysia
- Department of Cell and Molecular Biology
| |
Collapse
|