1
|
Araque I, Ramírez J, Vergara R, Mella J, Aránguiz P, Espinoza L, Vera W, Montenegro I, Salas CO, Villena J, Cuellar MA. Cytotoxic Activity, Topoisomerase I Inhibition and In Silico Studies of New Sesquiterpene-aryl Ester Derivatives of (-) Drimenol. Molecules 2023; 28:molecules28093959. [PMID: 37175368 PMCID: PMC10179937 DOI: 10.3390/molecules28093959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we aimed to evaluate two sets of sesquiterpene-aryl derivatives linked by an ester bond, their cytotoxic activities, and their capacity to activate caspases 3/7 and inhibit human topoisomerase I (TOP1). A total of 13 compounds were synthesized from the natural sesquiterpene (-)-drimenol and their cytotoxic activity was evaluated in vitro against three cancer cell lines: PC-3 (prostate cancer), HT-29 (colon cancer), MCF-7 (breast cancer), and an immortalized non-tumoral cell line (MCF-10). From the results, it was observed that 6a was the most promising compound due to its cytotoxic effect on three cancer cell lines and its selectivity, 6a was 100-fold more selective than 5-FU in MCF-7 and 20-fold in PC-3. It was observed that 6a also induced apoptosis by caspases 3/7 activity using a Capsase-Glo-3/7 assay kit and inhibited TOP1. A possible binding mode of 6a in a complex with TOP1-DNA was proposed by docking and molecular dynamics studies. In addition, 6a was predicted to have a good pharmacokinetic profile for oral administration. Therefore, through this study, it was demonstrated that the drimane scaffold should be considered in the search of new antitumoral agents.
Collapse
Affiliation(s)
- Ileana Araque
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile
| | - Javiera Ramírez
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile
| | - Rut Vergara
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar 2520000, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Waleska Vera
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Iván Montenegro
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso 2340000, Chile
- Facultad de Medicina, Escuela de Obstetricia y Puericultura, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago de Chile 7820436, Chile
| | - Joan Villena
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Mauricio A Cuellar
- Facultad de Farmacia, Escuela de Química y Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2340000, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
2
|
Soto M, Estevez-Braun A, Amesty Á, Kluepfel J, Restrepo S, Diaz K, Espinoza L, Olea AF, Taborga L. Synthesis and Fungicidal Activity of Hydrated Geranylated Phenols against Botrytis cinerea. Molecules 2021; 26:6815. [PMID: 34833907 PMCID: PMC8620067 DOI: 10.3390/molecules26226815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Botrytis cinerea is a ubiquitous fungus that affects hundreds of plants, resulting in economic losses to the horticulture and fruit industry. The search for new antifungal agents is a matter of current interest. Thus, in this work a series of geranylated phenols in which the side alkyl chain has been hydrated have been synthesized, and their activity against B. cinerea has been evaluated. The coupling of phenol and geraniol has been accomplished under microwave irradiation obtaining the highest reaction yields in the shortest reaction times. Hydration of the side chain was carried out in dioxane with p-toluenesulfonic acid polymer-bound as the catalyst. All synthesized compounds were tested against B. cinerea using the growth inhibition assay and EC50 values were determined. The results show that activity depends on the number and nature of functional groups in the phenol ring and hydration degree of the geranyl chain. The most active compound is 1,4-dihydroquinone with one hydroxyl group attached at the end of the alkyl chain. Results from a molecular docking study suggest that hydroxyl groups in the phenol ring and alkyl chain are important in the binding of compounds to the active site, and that the experimental antifungal activity correlates with the number of H-bond that can be formed in the binding site.
Collapse
Affiliation(s)
- Mauricio Soto
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Ana Estevez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González (CIBICAN), Departamento de Química Orgánica, Universidad de La Laguna, Av. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Spain; (A.E.-B.); (Á.A.)
| | - Julia Kluepfel
- Department of Chemistry, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching, Germany;
| | - Susana Restrepo
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Katy Diaz
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| | - Andrés F. Olea
- Grupo de Química y Bioquímica Aplicada en Biotecnología, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile; (M.S.); (S.R.); (K.D.); (L.E.)
| |
Collapse
|
3
|
Petti C. Phloroglucinol Mediated Plant Regeneration of Ornithogalum dubium as the Sole "Hormone-Like Supplement" in Plant Tissue Culture Long-Term Experiments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E929. [PMID: 32717803 PMCID: PMC7464755 DOI: 10.3390/plants9080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a "hormone-like" molecule and can trigger direct embryogenesis without callus formation.
Collapse
Affiliation(s)
- Carloalberto Petti
- Institute of Technology Carlow, EnviroCORE, DSH, Kilkenny Road, R93 V960 Carlow, Ireland
| |
Collapse
|
4
|
Kamauchi H, Oda T, Horiuchi K, Takao K, Sugita Y. Synthesis of natural product-like polyprenylated phenols and quinones: Evaluation of their neuroprotective activities. Bioorg Med Chem 2019; 28:115156. [PMID: 31740200 DOI: 10.1016/j.bmc.2019.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 11/26/2022]
Abstract
Twenty-seven natural product-like polyprenylated phenols and quinones were synthesized and their neuroprotective activity was tested using human monoamine oxidase B (MAO-B) and SH-SY5Y cells. Eight compounds inhibited MAO-B (IC50 values < 25 μM) and the inhibition mode and molecular docking of two (8c and 16c) were investigated. Compounds inhibiting MAO-B activity were additionally tested for their ability to protect SH-SY5Y cells from peroxide injury. Three derivatives (3c, 8c and 16c) exhibited both MAO-B inhibitory and neuroprotective activity. A structure activity-relationship study showed that a phenolic hydroxyl group and a longer side chain are important for both activities.
Collapse
Affiliation(s)
- Hitoshi Kamauchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan.
| | - Takumi Oda
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Kanayo Horiuchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
5
|
Chavez MI, Soto M, Cimino FA, Olea AF, Espinoza L, Díaz K, Taborga L. In Vitro Antifungal Activity of New and Known Geranylated Phenols against Phytophthora cinnamomi Rands. Int J Mol Sci 2018; 19:ijms19061601. [PMID: 29844282 PMCID: PMC6032260 DOI: 10.3390/ijms19061601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi. The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one –OH and one –OCH3) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil®, a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi. The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.
Collapse
Affiliation(s)
- María I Chavez
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Mauricio Soto
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Franco A Cimino
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Andrés F Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910339, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| |
Collapse
|
6
|
Antifungal toxicity of linear geranylphenol. Influence of oxigenate substituents. Food Chem Toxicol 2017; 109:827-835. [DOI: 10.1016/j.fct.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 01/06/2023]
|
7
|
Soto M, Espinoza L, Chávez MI, Díaz K, Olea AF, Taborga L. Synthesis of New Hydrated Geranylphenols and in Vitro Antifungal Activity against Botrytis cinerea. Int J Mol Sci 2016; 17:ijms17060840. [PMID: 27271604 PMCID: PMC4926374 DOI: 10.3390/ijms17060840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/12/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Geranylated hydroquinones and other geranylated compounds isolated from Aplydium species have shown interesting biological activities. This fact has prompted a number of studies where geranylated phenol derivatives have been synthesized in order to assay their bioactivities. In this work, we report the synthesis of a series of new hydrated geranylphenols using two different synthetic approaches and their inhibitory effects on the mycelial growth of Botrytis cinerea. Five new hydrated geranylphenols were obtained by direct coupling reaction between geraniol and phenol in dioxane/water and using BF3·Et2O as the catalyst or by the reaction of a geranylated phenol with BF3·Et2O. Two new geranylated quinones were also obtained. The synthesis and structural elucidation of all new compounds is presented. All hydrated geranylphenols efficiently inhibit the mycelial growth of B. cinerea. Their activity is higher than that observed for non-hydrated compounds. These results indicate that structural modification on the geranyl chain brings about an enhancement of the inhibition effect of geranylated phenol derivatives.
Collapse
Affiliation(s)
- Mauricio Soto
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - María I Chávez
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Andrés F Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910339, Chile.
| | - Lautaro Taborga
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|