1
|
Zhang X, Shao C, Jin L, Wan H, He Y. Optimized Separation of Carthamin from Safflower by Macroporous Adsorption Resins and Its Protective Effects on PC12 Cells Injured by OGD/R via Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18986-18998. [PMID: 37997370 DOI: 10.1021/acs.jafc.3c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The growing demand for safe natural products has reignited people's interest in natural food pigments. Here, we proposed the use of macroporous adsorption resins (MARs) to separate and purify carthamin from safflower. The optimal parameters for carthamin purification with HPD400 MAR were determined as follows: a mass ratio of crude carthamin in sample solution to wet resin of 0.3, a crude carthamin solution concentration of 0.125 g·mL-1, a pH of 6.00, a sample volume flow rate of 0.5 mL·min-1, an ethanol volume fraction of 58%, an elution volume of 4 BV, and an elution volume flow rate of 1.0 mL·min-1. Under the above purification conditions, the recovery rate of carthamin was above 96%. Carthamin dramatically improved the survival rate of PC12 cells damaged by oxygen-glucose deprivation/reoxygenation and protected them from oxidative stress by inhibiting the generation of reactive oxygen species and increasing the total antioxidant capacity and glutathione (GSH) levels. Carthamin promoted extracellularly regulated protein kinase phosphorylation into the nucleus, permitting Nrf2 nuclear translocation and upregulating the gene expression of the rate-limiting enzymes glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase regulatory subunit of GSH synthesis to obliterate free radicals and exert antioxidant effects. This study revealed the purification method of carthamin and its antioxidant protective effects, providing important insights into the application of carthamin in functional foods.
Collapse
Affiliation(s)
- Xian Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
2
|
Zhang C, Shi Z, Xu Q, He J, Chen L, Lu Z, Huan Q, Wang Y, Cui G. Astragaloside IV alleviates stroke-triggered early brain injury by modulating neuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway. Acta Cir Bras 2023; 38:e380723. [PMID: 36995819 PMCID: PMC10041803 DOI: 10.1590/acb380723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 03/31/2023] Open
Abstract
PURPOSE Stroke is an acute cerebrovascular disease. Astragaloside IV (AS-IV) is an active ingredient extracted from Astragalus membranaceus with an established therapeutic effect on central nervous system diseases. This study examined the neuroprotective properties and possible mechanisms of AS-IV in stroke-triggered early brain injury (EBI) in a rat transient middle cerebral artery occlusion (MCAO) model. METHODS The neurological scores and brain water content were analyzed. 2,3,5-triphenyl tetrazolium chloride (TTC) staining was utilized to determine the infarct volume, neuroinflammatory cytokine levels, and ferroptosis-related genes and proteins, and neuronal damage and molecular mechanisms were evaluated by terminal deoxynucleotidyl transferase dutp nick-end labeling (TUNEL) staining, western blotting, and real-time polymerase chain reaction. RESULTS AS-IV administration decreased the infarct volume, brain edema, neurological deficits, and inflammatory cytokines TNF-α, interleukin-1β (IL-1β), IL-6, and NF-κB, increased the levels of SLC7A11 and glutathione peroxidase 4 (GPX4), decreased lipid reactive oxygen species (ROS) levels, and prevented neuronal ferroptosis. Meanwhile, AS-IV triggered the Nrf2/HO-1 signaling pathway and alleviated ferroptosis due to the induction of stroke. CONCLUSIONS Hence, the findings of this research illustrate that AS-IV administration can improve delayed ischemic neurological deficits and decrease neuronal death by modulating nuroinflammation and ferroptosis via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Chunlei Zhang
- Soochow University – First Affiliated Hospital – Department of Neurosurgery – Jiangsu, China
- Anhui Medical University – Wuxi Clinical College – 904th Hospital of Joint Logistic Support Force of PLA – Department of Neurosurgery – Wuxi, China
| | - Zhonghua Shi
- Anhui Medical University – Wuxi Clinical College – 904th Hospital of Joint Logistic Support Force of PLA – Department of Neurosurgery – Wuxi, China
| | - Qinyi Xu
- Wuxi Huishan Peoples Hospital – Department of Neurosurgery – Jiangsu, China
| | - Jianqing He
- Anhui Medical University – Wuxi Clinical College – 904th Hospital of Joint Logistic Support Force of PLA – Department of Neurosurgery – Wuxi, China
| | - Lei Chen
- Anhui Medical University – Wuxi Clinical College – 904th Hospital of Joint Logistic Support Force of PLA – Department of Neurosurgery – Wuxi, China
| | - Zehua Lu
- 904th Hospital of Joint Logistic Support Force of PLA – Department of Radiology – Jiangsu, China
| | - Qiaohua Huan
- 904th Hospital of Joint Logistic Support Force of PLA – Department of Radiology – Jiangsu, China
| | - Yuhai Wang
- Anhui Medical University – Wuxi Clinical College – 904th Hospital of Joint Logistic Support Force of PLA – Department of Neurosurgery – Wuxi, China
| | - Gang Cui
- Soochow University – First Affiliated Hospital – Department of Neurosurgery – Jiangsu, China
| |
Collapse
|
3
|
Cen J, Zhang R, Zhao T, Zhang X, Zhang C, Cui J, Zhao K, Duan S, Guo Y. A Water-Soluble Quercetin Conjugate with Triple Targeting Exerts Neuron-Protective Effect on Cerebral Ischemia by Mitophagy Activation. Adv Healthc Mater 2022; 11:e2200817. [PMID: 36071574 DOI: 10.1002/adhm.202200817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
The existing treatments for ischemic stroke cannot meet the clinical needs so far. Quercetin (QT) is an effective apoptosis inhibitor and antioxidant flavonoid, but its water solubility is poor and has no targeting. In this study, QT is modified with hyaluronic acid (HA) to form a water-soluble conjugate HA-QT, which can specifically bind to CD44 receptors and response to hyaluronidase. Next, a novel delivery system SS31-HA-QT is prepared by further modification with SS31, a polypeptide capable of penetrating the blood-brain barrier (BBB) and indiscriminately targeting mitochondria. Meanwhile, IR780, a near-infrared dye, is conjugated onto HA-QT and SS31-HA-QT to form diagnosis tools to trace HA-QT and SS31-HA-QT. In vitro and in vivo results shows that SS31 can four-fold increase the drug penetration into BBB without any toxicity. The highly expressed CD44 and hyaluronidase in ischemic area ensured the targeted delivery of QT to the ischemic region. Importantly, the mitochondrial targeting of damaged neurons is also achieved by SS31. Further studies confirmed that SS31-HA-QT exerted neuron-protection by activating mitophagy, and its mechanism involved Akt/mTOR related TFEB and HIF-1α activation. Hence, SS31-HA-QT shall be a promising neuroprotective drug due to its high water-solubility, superior triple-targeted neuroprotective ability, low toxicity, and high efficiency.
Collapse
Affiliation(s)
- Juan Cen
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Runfang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tingkui Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Keqing Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shaofeng Duan
- Key Laboratory of Natural Medicine and Immune Engineering, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, 475004, China.,Henan International Joint Laboratory of Chinese Medicine Efficacy, Henan University, Kaifeng, 475004, China
| | - Yuqi Guo
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Engineering Research Center for Gynecological Oncology Nanomedicine of Henan Province, Zhengzhou, 450003, China
| |
Collapse
|
4
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
5
|
Fang XL, Ding SY, Du XZ, Wang JH, Li XL. Ferroptosis—A Novel Mechanism With Multifaceted Actions on Stroke. Front Neurol 2022; 13:881809. [PMID: 35481263 PMCID: PMC9035991 DOI: 10.3389/fneur.2022.881809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
As a neurological disease with high morbidity, disability, and mortality, the pathological mechanism underlying stroke involves complex processes such as neuroinflammation, oxidative stress, apoptosis, autophagy, and excitotoxicity; but the related research on these molecular mechanisms has not been effectively applied in clinical practice. As a form of iron-dependent regulated cell death, ferroptosis was first discovered in the pathological process of cancer, but recent studies have shown that ferroptosis is closely related to the onset and development of stroke. Therefore, a deeper understanding of the relationship between ferroptosis and stroke may lead to more effective treatment strategies. Herein, we reviewed the mechanism(s) underlying the onset of ferroptosis in stroke, the potential role of ferroptosis in stroke, and the crosstalk between ferroptosis and other pathological mechanisms. This will further deepen our understanding of ferroptosis and provide new approaches to the treatment of stroke.
Collapse
Affiliation(s)
- Xiao-Ling Fang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shao-Yun Ding
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiao-Zheng Du
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- *Correspondence: Xiao-Zheng Du
| | - Jin-Hai Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Lanzhou University, Lanzhou, China
- Jin-Hai Wang
| | - Xing-Lan Li
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021; 167:105526. [DOI: 10.1016/j.phrs.2021.105526] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
|
7
|
Mu D, Qin H, Jiao M, Hua S, Sun T. Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway. J Zhejiang Univ Sci B 2021; 22:123-135. [PMID: 33615753 DOI: 10.1631/jzus.b2000540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.
Collapse
Affiliation(s)
- Dan Mu
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Huaguang Qin
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Mengjie Jiao
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Shaogui Hua
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Tingzhe Sun
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China.
| |
Collapse
|
8
|
Chen J, Wang Y, Wu J, Yang J, Li M, Chen Q. The Potential Value of Targeting Ferroptosis in Early Brain Injury After Acute CNS Disease. Front Mol Neurosci 2020; 13:110. [PMID: 32625062 PMCID: PMC7314952 DOI: 10.3389/fnmol.2020.00110] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Acute central nervous system (CNS) disease is very common and with high mortality. Many basic studies have confirmed the molecular mechanism of early brain injury (EBI) after acute CNS disease. Neuron death and dysfunction are important reasons for the neurological dysfunction in patients with acute CNS disease. Ferroptosis is a nonapoptotic form of cell death, the classical characteristic of which is based on the iron-dependent accumulation of toxic lipid reactive oxygen species. Previous studies have indicated that this mechanism is critical in the cell death events observed in many diseases, including cancer, tumor resistance, Alzheimer’s disease, Parkinson’s disease, stroke, and intracerebral hemorrhage (ICH). Ferroptosis may also play a very important role in EBI after acute CNS disease. Unresolved issues include the relationship between ferroptosis and other forms of cell death after acute CNS disease, the specific molecular mechanisms of EBI, the strategies to activate or inhibit ferroptosis to achieve desirable attenuation of EBI, and the need to find new molecular markers of ferroptosis that can be used to detect and study this process in vivo after acute CNS disease.
Collapse
Affiliation(s)
- Junhui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Yuhai Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Jiyun Wu
- Department of Orthopedic, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Jiaji Yang
- Department of Orthopedic, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Chang P, Tian Y, Williams AM, Bhatti UF, Liu B, Li Y, Alam HB. Inhibition of Histone Deacetylase 6 Protects Hippocampal Cells Against Mitochondria-mediated Apoptosis in a Model of Severe Oxygen-glucose Deprivation. Curr Mol Med 2019; 19:673-682. [DOI: 10.2174/1566524019666190724102755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase (HDAC) 6 inhibitors have demonstrated
significant protective effects in traumatic injuries. However, their roles in neuroprotection
and underlying mechanisms are poorly understood. This study sought to investigate the
neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose
deprivation (OGD) in HT22 hippocampal cells.
Methods:
HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity
were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release
assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using
JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl-
2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β
were analyzed by Western blot analysis.
Results:
Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy.
Tub-A significantly increased cell viability and attenuated LDH release after exposure to
OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells
following OGD and preserved the mitochondrial membrane potential. Tub-A also
attenuated the release of cytochrome c from the mitochondria into the cytoplasm and
suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by
the increased phosphorylation of Akt and GSK3β signaling pathways.
Conclusion:
HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in
HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated
apoptosis.
Collapse
Affiliation(s)
- Panpan Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron M. Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Umar F. Bhatti
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Hasan B. Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
10
|
Carnosine Protects Mouse Podocytes from High Glucose Induced Apoptosis through PI3K/AKT and Nrf2 Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4348973. [PMID: 31275971 PMCID: PMC6558648 DOI: 10.1155/2019/4348973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is the complication of diabetes mellitus that can lead to chronic renal failure. Reactive oxygen species (ROS) production plays an important role in its pathological process. Previous studies showed that carnosine may reduce diabetic nephropathy by antioxidant effect. However, the molecular mechanism of its antioxidant was not fully understood. In the current study, we developed high glucose containing different concentrations of carnosine to reduce ROS levels and podocytes apoptosis, and Cell Counting Kit-8 test was used to observe the cell viability. Carnosine (5-20mM) was found to protect mouse podocytes (MPC5) cells from HG-induced injury. Quantitative real-time PCR, Western blotting, and immunofluorescence staining revealed that high glucose induced ROS levels and podocytes apoptosis were downregulated by PI3K/AKT and Nrf2 signaling pathways. The current findings suggest that carnosine may reduce ROS levels and MPC5 cells apoptosis by PI3K/AKT and Nrf2 signaling pathways activation.
Collapse
|
11
|
Abstract
Mild environmental stress might have beneficial effects in aging by activating maintenance and repair processes in cells and organs. These beneficial stress effects fit to the concept of hormesis. Prominent stressors acting in a hormetic way are physical exercises, fasting, cold and heat. This review will introduce some toxins, which have been found to induce hormetic responses in animal models of aging research. To highlight the molecular signature of these hormetic effects we will depict signaling pathways affected by low doses of toxins on cellular and organismic level. As prominent examples for signaling pathways involved in both aging processes as well as toxin responses, PI3K/Akt/mTOR- and AMPK-signal transduction will be described in more detail. Due to the striking overlap of signaling pathways mediating toxin induced responses and aging processes we propose considering the ability of low doses of toxins to slow down the rate of aging.
Collapse
|
12
|
Chen S, Sun M, Zhao X, Yang Z, Liu W, Cao J, Qiao Y, Luo X, Wen A. Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol Med Rep 2019; 19:3009-3020. [PMID: 30816517 PMCID: PMC6423596 DOI: 10.3892/mmr.2019.9959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
Stroke is the second most frequent cause of mortality, resulting in a huge societal burden worldwide. Timely reperfusion is the most effective therapy; however, it is difficult to prevent ischemia/reperfusion (I/R) injury. In traditional Chinese medicine, hydroxysafflor yellow A (HSYA) has been widely used for the treatment of cerebrovascular disease and as a protective therapy against I/R injury. Evidence has demonstrated that HSYA could reduce the levels of reactive oxygen species and suppress cellular apoptosis; however, whether HSYA alters the metabolic profile as its underlying mechanism for neuroprotection remains unknown. In the present study, using a metabolomic screening, phenylalanine was identified to significantly increase in an experimental model of mouse cerebral I/R injury. Notably, western blotting and qPCR analysis were conducted to test the expression level of apoptosis-associated factors, and HSYA was identified to be able to protect neuronal cells by reducing phenylalanine level associated with I/R injury. Additionally, these findings were confirmed in primary mouse neurons and PC12 cells exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) stress. Of note, HSYA was observed to regulate the mRNA expression of key metabolic enzymes, phenylalanine hydroxylase, tyrosine aminotransferase and aspartate aminotransferase, which are responsible for phenylalanine metabolism. Furthermore, by performing mitochondrial labeling and JC-1 fluorescence assay, HSYA was identified to promote mitochondrial function and biogenesis suppressed by OGD/R. The findings of the present study demonstrated that I/R injury could increase the levels of phenylalanine, and HSYA may inhibit phenylalanine synthesis to enhance mitochondrial function and biogenesis for neuroprotection. The present study proposed a novel metabolite biomarker for cerebral I/R injury and the evaluated the efficacy of HSYA as a potential therapeutic treatment I/R injury.
Collapse
Affiliation(s)
- Suning Chen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mao Sun
- Department of Biochemistry and Molecular Biology, Center for DNA Typing, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xianghui Zhao
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenxing Liu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Shi Y, Zhang Y, Li Y, Tong C. Retracted Article: Sauchinone inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells. RSC Adv 2019; 9:17065-17071. [PMID: 35519842 PMCID: PMC9064550 DOI: 10.1039/c9ra02817j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and results in acquired blindness among working-age adults. It has been demonstrated that high glucose (HG)-induced oxidative stress and cell apoptosis in retinal pigment epithelial (RPE) cells are major factors for the pathogenesis of DR. Sauchinone, one of the active lignan isolated from Saururus chinensis, was reported to possess anti-oxidant and anti-apoptosis effects. In the present study, we investigated the effects of sauchinone on HG-induced oxidative stress and apoptosis in ARPE-19 cells. Our results proved that sauchinone improved the cell viability of HG-induced ARPE-19 cells. Moreover, sauchinone treatment caused a decrease in intracellular reactive oxygen species (ROS) generation and an increase in the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Besides, flow cytometry showed that the apoptotic rate in sauchinone-treated ARPE-19 cells obviously decreased as compared in the HG-treated cells. Western blot indicated that sauchinone treatment caused a significant decrease in bax expression and increase in bcl-2 expression in HG-treated ARPE-19 cells. Sauchinone treatment enhanced the HG-caused induction of p-Akt, nuclear factor erythroid 2-related factor (Nrf2), and heme oxygenase-1 (HO-1) expressions in ARPE-19 cells. However, the inhibitor of Akt, LY294002, reversed the effects of sauchinone on cell viability, oxidative stress, and cell apoptosis in HG-treated ARPE-19 cells. These findings suggested that sauchinone treatment prevented HG-induced oxidative stress and apoptosis via regulating the Akt/Nrf2/HO-1 pathway in HG-induced RPE cells. These findings suggested that sauchinone might be a therapeutic agent for the treatment and prevention of DR. Diabetic retinopathy (DR) is a common complication of diabetes mellitus and results in acquired blindness among working-age adults.![]()
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmacy
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Yongzhou Zhang
- Department of Pharmacy
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Yan Li
- Department of Pharmacy
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Chenjun Tong
- Department of Pharmacy
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| |
Collapse
|
14
|
Ferroptosis, a Recent Defined Form of Critical Cell Death in Neurological Disorders. J Mol Neurosci 2018; 66:197-206. [DOI: 10.1007/s12031-018-1155-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
15
|
Li H, Tang Z, Chu P, Song Y, Yang Y, Sun B, Niu M, Qaed E, Shopit A, Han G, Ma X, Peng J, Hu M, Tang Z. Neuroprotective effect of phosphocreatine on oxidative stress and mitochondrial dysfunction induced apoptosis in vitro and in vivo: Involvement of dual PI3K/Akt and Nrf2/HO-1 pathways. Free Radic Biol Med 2018; 120:228-238. [PMID: 29559323 DOI: 10.1016/j.freeradbiomed.2018.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Methylglyoxal (MGO), an active metabolite of glucose, is observed in high levels in the tissues and blood of diabetic patients. Phosphocreatine (PCr), a high-energy phosphate compound, exhibits a range of pharmacological actions but little is well known of its neuroprotective action. The aim of the present study was to investigate the neuroprotective effects and the possible mechanisms of PCr. Diabetes is closely associated with neurodegenerative diseases, leading not only to the peripheral nervous system (PNS) and but also to central nervous system (CNS) damage. Therefore, we established two rat models of diabetes in vivo induced by MGO and streptozocin (STZ) respectively, while utilized differentiated PC-12 cells in vitro. Treatment of PC-12 cells with PCr markedly attenuated MGO-induced change of viability, apoptosis, accompanied by decreased levels of caspase-3, casapse-9 and Bcl-2/Bax protein ratio. Determination of cellular respiratory function was performed with intact PC-12 cells and homogenized hippocampal neuron tissue of rat. Reactive oxygen species (ROS) generation was assessed by membrane permeable fluorescent probe DCFH-DA. The expressions of Akt, Nrf2 and HO-1 were examined by Western blot. PCr pretreatment significantly reduced oxidative stress-induced high LDH, MDA level, and ROS production of PC-12 cells. PCr pretreatment also significantly decreased mitochondrial dysfunction in vitro and in vivo. In addition, PCr pretreatment increased the expression of p-Akt, Nrf2 and HO-1, and reduced the apoptosis. Moreover, the expression of Cleaved caspase3 was partially increased and the p-Akt, Nrf2 and HO-1 was partially reduced by a PI3K inhibitor (LY294002). While, compared with LY294002 groups, pre-treatment with PCr at the concentrations of 20 mM significantly reduced the expression of Cleaved caspase3 and increased the expression of p-Akt, Nrf2 and HO-1. Molecular docking assay showed that PCr possessed powerful affinity towards to Akt with lower binding energy. In conclusion, the neuroprotective effects of PCr in vitro and in vivo rely on normalizing mitochondrial function and reducing oxidative stress via Akt mediated Nrf2/HO-1 pathway, suggesting that PCr may be a novel therapeutic candidate for the treatment of diabetes-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, PR China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yanlin Song
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ying Yang
- Dalian Medical University, Affiliated Hosp 2, Neurological Intensive Care Un it, Dalian 116027, PR China
| | - Bin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Mengyue Niu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Guozhu Han
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, PR China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
16
|
Liu L, Wu W, Li J, Jiao WH, Liu LY, Tang J, Liu L, Sun F, Han BN, Lin HW. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 2018; 100:417-425. [PMID: 29471244 DOI: 10.1016/j.biopha.2018.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS To investigate the cytoprotective effects of two sesquiterpene aminoquinones isolated from the marine sponge Dysidea fragilis, Dysidaminone H (DA8) and 3'-methylamino-avarone (DA14), we examined their effects against hydrogen peroxide (H2O2)-induced oxidative injury in human keratinocyte cell line and elucidated the underlying mechanisms. MAIN METHODS Cell viability was detected using a CCK-8 assay kit. Intracellular reactive oxygen species (ROS) production was measured by fluorescence of 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Messenger RNA and protein expression were measured by real-time quantitative PCR and western blotting analysis. Immunocytochemistry was performed to determine the intracellular location of nuclear factorerythroid 2 p45 related factor 2 (Nrf2). The antioxidant response element (ARE)-luciferase reporter gene assay and RNA interference were used to establish the role of ARE and Nrf2. KEY FINDINGS DA8 and DA14 (DAs) resisted H2O2induced decline of cell viability by inhibiting the accumulation of ROS. Meanwhile, DAs increased HO-1 expression and ARE activity and induced Nrf2 expression, as well as the accumulation of Nrf2 in the cell nucleus. However, silencing of Nrf2 abolished DAs-induced HO-1 expression and ARE luciferase activation. In addition, DAs induced the phosphorylation of both cyclic AMP-activated protein kinase-α (AMPKα) and extracellular signal-regulated kinase (ERK), while specific inhibitors of AMPKα and ERK abrogated HO1 upregulation and Nrf2 activation. SIGNIFICANCE DAs provided cytoprotective effects against H2O2-induced cytotoxicity by activation of the Nrf2/ARE/HO-1 pathway via phosphorylation of AMPKα and ERK. The findings suggested that DA8 and DA14 might be the candidate therapeutic agents for skin diseases caused by oxidative injury.
Collapse
Affiliation(s)
- Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
17
|
Neuroprotective Effects of Bioactive Compounds and MAPK Pathway Modulation in "Ischemia"-Stressed PC12 Pheochromocytoma Cells. Brain Sci 2018; 8:brainsci8020032. [PMID: 29419806 PMCID: PMC5836051 DOI: 10.3390/brainsci8020032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
This review surveys the efforts taken to investigate in vitro neuroprotective features of synthetic compounds and cell-released growth factors on PC12 clonal cell line temporarily deprived of oxygen and glucose followed by reoxygenation (OGD/R). These cells have been used previously to mimic some of the properties of in vivo brain ischemia-reperfusion-injury (IRI) and have been instrumental in identifying common mechanisms such as calcium overload, redox potential, lipid peroxidation and MAPKs modulation. In addition, they were useful for establishing the role of certain membrane penetrable cocktails of antioxidants as well as potential growth factors which may act in neuroprotection. Pharmacological mechanisms of neuroprotection addressing modulation of the MAPK cascade and increased redox potential by natural products, drugs and growth factors secreted by stem cells, in either undifferentiated or nerve growth factor-differentiated PC12 cells exposed to ischemic conditions are discussed for future prospects in neuroprotection studies.
Collapse
|
18
|
Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep 2017; 4:306-318. [PMID: 28959654 PMCID: PMC5615147 DOI: 10.1016/j.toxrep.2017.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The Nuclear factor erythroid2-related factor2 (Nrf2), a master regulator of redox homoeostasis, is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes. It protects organs from various kinds of toxic insults. On the other hand, activation of Nrf2 is also correlated with cancer progression and chemoresistance. Downregulation of Nrf2 activity has attracted an increasing amount of attention as it may provide an alternative cancer therapy. In this review, we examine recent studies on roles of Nrf2 in several pathophysiological conditions emphasising cancer. We discuss elaborately the current knowledge on Nrf2 regulation including KEAP1-dependent and KEAP1-independent cascades. KEAP1/Nrf2 system is a master regulator of cellular response against a variety of environmental stresses. We also highlight several tightly controlled regulations of Nrf2 by numerous proteins, small molecules, toxic metals, etc. In addition, we evaluate the possible therapeutic approaches of increasing chemosensitivity via modulating Nrf2 signaling.
Collapse
|