1
|
Saher U, Ovais Omer M, Javeed A, Ahmad Anjum A, Rehman K, Awan T. Soluble laticifer proteins from Calotropis procera as an effective candidates for antimicrobial therapeutics. Saudi J Biol Sci 2023; 30:103659. [PMID: 37181638 PMCID: PMC10172833 DOI: 10.1016/j.sjbs.2023.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Calotropis procera is a latex-producing plant with plenty of pharmacologically active compounds. The principal motivation behind this study was to separate and characterize laticifer proteins to check their antimicrobial potential. Laticifer proteins were separated by gel filtration chromatography (GFC) and investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The SDS-PAGE assay detected proteins of molecular weights of 10 to 30 kDa but most of them were in the range of 25 to 30 kDa. The soluble laticifer proteins (SLPs) were tested against Gram-positive bacteria i.e., Streptococcus pyogenes and Staphylococcus aureus whereas Escherichia coli and Pseudomonas aeruginosa were tested as Gram-negative bacteria, we determined a profound anti-bacterial activity of these proteins. In addition, SLPs were also investigated against Candida albicans via the agar disc diffusion method which also showed significant anti-fungal activity. SLP exhibited antibacterial activity against P. aeruginosa, E. coli, and S. aureus with a minimum inhibitory concentration (MIC) of 2.5 mg/mL for each, while MIC was found at 0.625 mg/mL for S. pyogenes and 1.25 mg/mL for C. albicans. Moreover, enzymatic activity evaluation of SLP showed the proteolytic nature of these proteins, and this proteolytic activity was greatly enhanced after reduction which might be due to the presence of cysteine residues in the protein structure. The activity of the SLPs obtained from the latex of C. procera can be associated with the involvement of enzymes either proteases or, protease inhibitors and/or peptides.
Collapse
Affiliation(s)
- Uzma Saher
- Department of Pharmacy, The Women University, Multan 60000, Pakistan Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Corresponding author at: Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Tanzeela Awan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| |
Collapse
|
2
|
In vitro: Anti-coccidia activity of Calotropis procera leaf extract on Eimeria papillata oocysts sporulation and sporozoite. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Natural products play an important role as environmentally friendly agents that can be used against parasitic diseases. Many Eimeria species cause eimeriosis in poultry. The negative effects of synthetic anti-coccidiosis medications necessitate the quest for alternative treatments derived from medicinal plants in the treatment of eimeriosis. The study was conducted to evaluate the effects of Calotropis procera leaf extract (CPLE) (Madar) on the sporulation of Eimeria oocysts and sporozoites that affect mammalian jejunum and to obtain the best concentration for sporulation inhibition and infection prevention. Extracts were tested in vitro to prevent oocyst sporulation, wall deformity, and anti-sporozoite activity with Eimeria papillata. The plant-chemical compounds analysis of CPLE some active compounds were shown as well as CPLE in vitro effects at various concentrations (200, 100, 50, 25,12.5, and 6.25 mg/mL), while potassium dichromate solution 2.5% and Toltrazuril 25 mg/mL were administered as the control groups. C. procera leaf extract showed the highest inhibitory percentage on E. papillata oocyst at 200 mg/mL of extract, approximately 91%. In addition, CPLE showed the sporozoite highest viability inhibitory percentage on E. papillata at 200 mg/mL of extract, approximately 88%, and the lowest efficacy was 5% at 6.25 mg/mL. Also, we noticed the deformation and destruction of the oocyst wall based on the concentration rate. Sporulation inhibition rate is significantly affected by incubation time and treatment concentration ratio. The results showed that Madar has an effective, inhibitory potential, and protective effect on coccidian oocyst sporulation and sporozoites of E. papillata.
Collapse
|
3
|
Tavares LS, Mancebo BD, Santana LN, Adelson do Nascimento Silva A, Silva RLDO, Benko-Iseppon AM, Ramos MV, Monteiro do Nascimento CT, Grangeiro TB, Sousa JS, Mota RA, Júnior VADS, Lima-Filho JV. Recombinant osmotin inclusion bodies from Calotropis procera produced in E. coli BL21(DE3) prevent acute inflammation in a mouse model of listeriosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154186. [PMID: 35617890 DOI: 10.1016/j.phymed.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.
Collapse
|
4
|
Deshpande AM, Sastry KV, Bhise SB. A Contemporary Exploration of Traditional Indian Snake Envenomation Therapies. Trop Med Infect Dis 2022; 7:108. [PMID: 35736986 PMCID: PMC9227218 DOI: 10.3390/tropicalmed7060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022] Open
Abstract
Snakebite being a quick progressing serious situation needs immediate and aggressive therapy. Snake venom antiserum is the only approved and effective treatment available, but for selected snake species only. The requirement of trained staff for administration and serum reactions make the therapy complicated. In tropical countries where snakebite incidence is high and healthcare facilities are limited, mortality and morbidities associated with snake envenomation are proportionately high. Traditional compilations of medical practitioners' personal journals have wealth of plant-based snake venom antidotes. Relatively, very few plants or their extractives have been scientifically investigated for neutralization of snake venom or its components. None of these investigations presents enough evidence to initiate clinical testing of the agents. This review focuses on curating Indian traditional snake envenomation therapies, identifying plants involved and finding relevant evidence across modern literature to neutralize snake venom components. Traditional formulations, their method of preparation and dosing have been discussed along with the investigational approach in modern research and their possible outcomes. A safe and easily administrable small molecule of plant origin that would protect or limit the spread of venom and provide valuable time for the victim to reach the healthcare centre would be a great lifesaver.
Collapse
Affiliation(s)
- Adwait M. Deshpande
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
| | - K. Venkata Sastry
- Alliance Institute of Advanced Pharmaceutical & Health Sciences, Patel Nagar, Kukatpally, Hyderabad 500085, India;
| | - Satish B. Bhise
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
- Arogyalabh Foundation, Bibvewadi, Pune 411037, India
| |
Collapse
|
5
|
Latex peptidases produce peptides capable of delaying fungal growth in bread. Food Chem 2022; 373:131410. [PMID: 34710691 DOI: 10.1016/j.foodchem.2021.131410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023]
Abstract
Antimicrobial peptides (AMPs) have been reported to be promising alternatives to chemical preservatives. Thus, this study aimed to characterise AMPs generated from the hydrolysis of wheat gluten proteins using latex peptidases of Calotropis procera, Cryptostegia grandiflora, and Carica papaya. The three hydrolysates (obtained after 16 h at 37 °C, using a 1: 25 enzyme: substrate ratio) inhibited the growth of Aspergillus niger, A. chevalieri, Trichoderma reesei, Pythium oligandrum, Penicillium sp., and Lasiodiplodia sp. by 60-90%, and delayed fungal growth on bread by 3 days when used at 0.3 g/kg. Moreover, the specific volume and expansion factor of bread were not affected by the hydrolysates. Of 28 peptides identified, four were synthesised and exhibited activity against Penicillium sp. Fluorescence and scanning electron microscopy suggested that the peptides damaged the fungal plasma membrane. Bioinformatics analysis showed that no peptide was toxic and that the antigenic ones had cleavage sites for trypsin or pepsin.
Collapse
|
6
|
Oliveira KAD, Araújo HN, Lima TID, Oliveira AG, Favero-Santos BC, Guimarães DSP, Freitas PAD, Neves RDJD, Vasconcelos RP, Almeida MGGD, Ramos MV, Silveira LR, Oliveira ACD. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells. Saudi Pharm J 2021; 29:1061-1069. [PMID: 34588851 PMCID: PMC8463474 DOI: 10.1016/j.jsps.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/04/2021] [Indexed: 12/03/2022] Open
Abstract
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.
Collapse
Key Words
- AMPK, AMP-activated kinase protein
- AUC, Area under the curve
- Bioactive proteins
- CTL, Control
- Calotropis procera
- CpPII, Major peptidase fraction treated with iodoacetamide
- DHE, Dihydroethidium
- DMEM, Dulbecco’s minimal essential medium
- DMSO, Dimethyl sulfoxide
- FCCP, Oligomycin carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazine
- Folk medicine
- Glycemia
- HGP, Hepatic glucose production
- LP, Soluble latex proteins from Calotropis procera
- Latex
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- OCR, Oxygen consumption rate
- OXPHOS, Oxidative phosphorylation
- PPAR, Peroxisome proliferator-activated receptor
- PPRE, PPAR response element
- ROS, Reactive oxygen species
- TBS-T, Tris buffered saline solution containing 0.1% Tween 20
- UCP2, Mitochondrial uncoupling protein 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ariclecio Cunha de Oliveira
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Brazil
- Corresponding author.at: Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
7
|
Amini MH, Ashraf K, Salim F, Meng Lim S, Ramasamy K, Manshoor N, Sultan S, Ahmad W. Important insights from the antimicrobial activity of Calotropis procera. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
8
|
Tavares LS, Ralph MT, Batista JEC, Sales AC, Ferreira LCA, Usman UA, da Silva Júnior VA, Ramos MV, Lima-Filho JV. Perspectives for the use of latex peptidases from Calotropis procera for control of inflammation derived from Salmonella infections. Int J Biol Macromol 2021; 171:37-43. [PMID: 33418044 DOI: 10.1016/j.ijbiomac.2020.12.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Anti-inflammatory properties have been attributed to latex proteins of the medicinal plant Calotropis procera. PURPOSE A mixture of cysteine peptidases (LPp2) from C. procera latex was investigated for control of inflammatory mediators and inflammation in a mouse model of Salmonella infection. METHODS LPp2 peptidase activity was confirmed by the BANA assay. Cytotoxicity assays were conducted with immortalized macrophages. Peritoneal macrophages (pMØ) from Swiss mice were stimulated with lipopolysaccharide (LPS) in 96-well plates and then cultured with nontoxic concentrations of LPp2. Swiss mice intravenously received LPp2 (10 mg/kg) and then were challenged intraperitoneally with virulent Salmonella enterica Ser. Typhimurium. RESULTS LPp2 was not toxic at dosages lower than 62.2 μg/mL. LPp2 treatments of pMØ stimulated with LPS impaired mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-10. LPp2 increased the intracellular bacterial killing in infected pMØ. Mice given LPp2 had a lower number of leukocytes in the peritoneal cavity in comparison to control groups 6 h after infection. The bacterial burden and histological damage were widespread in target organs of mice receiving LPp2. CONCLUSION We conclude that LPp2 contains peptidases with strong anti-inflammatory properties, which may render mice more susceptible to early disseminated infection caused by Salmonella.
Collapse
Affiliation(s)
| | - Maria Taciana Ralph
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Ana Clarissa Sales
- Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Usman Abdulhadi Usman
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Marcio Viana Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
9
|
Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:690806. [PMID: 34220914 PMCID: PMC8248367 DOI: 10.3389/fpls.2021.690806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Bhagirath S. Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia
- *Correspondence: Bhagirath S. Chauhan,
| |
Collapse
|
10
|
Sousa BF, Silva AFBD, Lima-Filho JV, Agostinho AG, Oliveira DN, de Alencar NMN, de Freitas CDT, Ramos MV. Latex proteins downregulate inflammation and restores blood-coagulation homeostasis in acute Salmonella infection. Mem Inst Oswaldo Cruz 2020; 115:e200458. [PMID: 33237133 PMCID: PMC7682140 DOI: 10.1590/0074-02760200458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Calotropis procera latex protein fraction (LP) was previously shown to protect animals from septic shock. Further investigations showed that LP modulate nitric oxide and cytokines levels. OBJECTIVES To evaluate whether the protective effects of LP, against lethal bacterial infection, is observed in its subfractions (LPPII and LPPIII). METHODS Subfractions (5 and 10 mg/kg) were tested by i.p. administration, 24 h before challenging with lethal injection (i.p.) of Salmonella Typhimurium. LPPIII (5 mg/kg) which showed higher survival rate was assayed to evaluate bacterial clearance, histopathology, leukocyte recruitment, plasma coagulation time, cytokines and NO levels. FINDINGS LPPIII protected 70% of animals of death. The animals given LPPIII exhibited reduced bacterial load in blood and peritoneal fluid after 24 h compared to the control. LPPIII promoted macrophage infiltration in spleen and liver. LPPIII restored the coagulation time of infected animals, increased IL-10 and reduced NO in blood. MAIN CONCLUSIONS LPPIII recruited macrophages to the target organs of bacterial infection. This addressed inflammatory stimulus seems to reduce bacterial colonisation in spleen and liver, down regulate bacterial spread and contribute to avoid septic shock.
Collapse
Affiliation(s)
- Brandon Ferraz Sousa
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | - José Vitor Lima-Filho
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, PE, Brasil
| | - Anderson Gomes Agostinho
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | | | | | | | - Márcio Viana Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| |
Collapse
|
11
|
Silveira SR, Coelho RA, Sousa BFE, Oliveira JSD, Lopez LMI, Lima-Filho JVM, Rocha Júnior PAV, Souza DPD, Freitas CDTD, Ramos MV. Standardized production of a homogeneous latex enzyme source overcoming seasonality and microenvironmental variables. Prep Biochem Biotechnol 2020; 51:375-385. [PMID: 32940546 DOI: 10.1080/10826068.2020.1818258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Calotropis procera produces a milky sap containing proteolytic enzymes. At low concentrations, they induce milk-clotting (60 µg/ml) and to dehair hides (0.05 and 0.1%). A protocol for obtaining the enzymes is reported. The latex was mixed with distilled water and the mixture was cleaned through centrifugation. It was dialyzed with distilled water and centrifuged again to recover the soluble fraction [EP]. The dialyze is a key feature of the process. EP was characterized in terms of protein profile, chemical stability, among other criteria. Wild plants belonging to ten geographic regions and grown in different ecological conditions were used as latex source. Collections were carried out, spaced at three-month, according to the seasons at the site of the study. Proteolytic activity was measured as an internal marker and for determining stability of the samples. EP was also analyzed for metal content and microbiology. EP showed similar magnitude of proteolysis, chromatographic and electrophoretic profiles of proteins. Samples stored at 25 °C exhibited reduced solubility (11%) and proteolytic capacity (11%) after six months. Enzyme autolysis was negligible. Microbiological and metal analyses revealed standard quality of all the samples tested. EP induced milk clotting and hide dehairing after storage for up to six months.
Collapse
Affiliation(s)
- Sandro Rios Silveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Raphael Alves Coelho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Brandon Ferraz E Sousa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | - Jefferson Soares de Oliveira
- Laboratório de Bioquímica de Plantas laticíferas (LABPL), Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Laura Maria Isabel Lopez
- Centro de Investigación y Tecnología del Cuero, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires & INTI-Cueros, Gonnet, Buenos Aires, Argentina
| | | | | | - Diego Pereira de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| | | | - Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil
| |
Collapse
|
12
|
Ramos MV, Freitas APF, Leitão RFC, Costa DVS, Cerqueira GS, Martins DS, Martins CS, Alencar NMN, Freitas LBN, Brito GAC. Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm Res 2020; 69:951-966. [PMID: 32488316 DOI: 10.1007/s00011-020-01365-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE AND DESIGN Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS Male Golden Sirius hamsters were used in all treatments. TREATMENT The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Ana Paula F Freitas
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, Ceará, Brazil
| | - Renata F C Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Deiziane V S Costa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Dainesy S Martins
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Nylane M N Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Larissa Barbosa N Freitas
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
Silva MZR, Oliveira JPB, Ramos MV, Farias DF, de Sá CA, Ribeiro JAC, Silva AFB, de Sousa JS, Zambelli RA, da Silva AC, Furtado GP, Grangeiro TB, Vasconcelos MS, Silveira SR, Freitas CDT. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chem 2020; 307:125574. [PMID: 31648178 DOI: 10.1016/j.foodchem.2019.125574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023]
Abstract
This article reports the characterization and evaluation of the biotechnological potential of a cysteine protease purified from Calotropis procera (CpCP3). This enzyme was highly stable to different metal ions and was able to hydrolyze κ-casein similarly to bovine chymosin. Atomic force microscopy showed that the process of casein micelle aggregation induced by CpCP3 was similar to that caused by chymosin. The cheeses made using CpCP3 showed higher moisture content than those made with chymosin, but protein, fat, and ash were similar. The sensory analysis showed that cheeses made with CpCP3 had high acceptance index (>80%). In silico analysis predicted the presence of only two short allergenic peptides on the surface of CpCP3, which was highly susceptible to digestive enzymes and did not alter zebrafish embryos' morphology and development. Moreover, recombinant CpCP3 was expressed in Escherichia coli. All results support the biotechnological potential of CpCP3 as an alternative enzyme to chymosin.
Collapse
Affiliation(s)
- Maria Z R Silva
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil
| | - João P B Oliveira
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil
| | - Márcio V Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil
| | - Davi F Farias
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, João Pessoa, PB, Brazil
| | - Chayenne A de Sá
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, João Pessoa, PB, Brazil
| | - Juliana A C Ribeiro
- Universidade Federal da Paraíba, Departamento de Biologia Molecular, João Pessoa, PB, Brazil
| | - Ayrles F B Silva
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil
| | - Jeanlex S de Sousa
- Universidade Federal do Ceará, Departamento de Física, Fortaleza, CE, Brazil.
| | - Rafael A Zambelli
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Fortaleza, CE, Brazil.
| | - Ana C da Silva
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Fortaleza, CE, Brazil.
| | | | - Thalles B Grangeiro
- Universidade Federal do Ceará, Departamento de Biologia, Fortaleza, CE, Brazil
| | - Mirele S Vasconcelos
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará/IFCE, Campus Baturité, Baturité, CE, Brazil.
| | - Sandro R Silveira
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil
| | - Cleverson D T Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Silva AF, Sousa JS, Cunha PL, Lima-Filho JV, Alencar NM, Freitas CD, Oliveira CL, Ramos MV. Erythrocytes morphology and hemorheology in severe bacterial infection. Mem Inst Oswaldo Cruz 2019; 114:e190326. [PMID: 31859703 PMCID: PMC6917465 DOI: 10.1590/0074-02760190326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Severe bacterial infections initiate inadequate inflammation that leads to
disseminated intravascular coagulation and death. OBJECTIVES To evaluate the influence of bacterial infection on blood viscosity and red
blood cells (RBCs) morphology, and the ability of Calotropis
procera proteins (CpLP) to prevent the patho-hemorheology in
infected animals. METHODS Rheology of blood, atomic force microscopy measurements on specific blood
elements and blood count were performed to examine changes in blood
viscosity, RBCs morphology, platelets activation, and RBCs indices. FINDINGS Infected mice hold their blood rheological behaviour as compared to that of
the control group. However, they presented hyperactivated platelets, RBCs at
different stages of eryptosis, and variation on RBCs indices. CpLP
administration in healthy animals altered blood behaviour from pseudoplastic
to Bingham-like fluid. Such effect disappeared over time and by inhibiting
its proteases. No alterations were observed in RBCs morphology or platelets.
Treatment of infected animals with CpLP prevented the changes in RBCs
indices and morphology. MAIN CONCLUSIONS The inflammatory process triggered by bacterial infection induced
pathological changes in RBCs and platelets activation. Treatment of infected
animals with CpLP prevented the emergence of RBCs abnormal morphology and
this may have implications in the protective effect of CpLP, avoiding animal
death.
Collapse
Affiliation(s)
- Ayrles Fb Silva
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | - Jeanlex S Sousa
- Universidade Federal do Ceará, Departamento de Física, Fortaleza, CE, Brasil
| | - Pablyana Lr Cunha
- Universidade Federal do Ceará, Departamento de Química Orgânica e Inorgânica, Fortaleza, CE, Brasil
| | - José V Lima-Filho
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, PE, Brasil
| | - Nylane Mn Alencar
- Universidade Federal do Ceará, Departamento de Fisiologia e Farmacologia, Fortaleza, CE, Brasil
| | - Cleverson Dt Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| | - Claudio Ln Oliveira
- Universidade Federal do Ceará, Departamento de Física, Fortaleza, CE, Brasil
| | - Marcio V Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Fortaleza, CE, Brasil
| |
Collapse
|
15
|
Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT. Laticifers, Latex, and Their Role in Plant Defense. TRENDS IN PLANT SCIENCE 2019; 24:553-567. [PMID: 30979674 DOI: 10.1016/j.tplants.2019.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Latex, a sap produced by cells called laticifers, occurs in plants of wide taxonomic diversity. Plants exude latex sap in response to physical damage. Questions about the function of latex or the underlying mechanisms persist, but a role in defense is likely. The presence of constitutive peptidases in latex sap in addition to inducible and de novo synthesized pathogenesis-related proteins (PR-proteins), raises the question about the role that each sap component plays to protect plants and how synergism occurs among sap proteins in the course of herbivory or infection. Here we discuss a variety of functions for laticifer and latex in plant defense. We propose that latex peptidases build the front line of defense against herbivores or pathogens.
Collapse
Affiliation(s)
- Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil.
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, CEP 05508-090, Brazil
| | - Isabel Cristina da Costa Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| | - Cleverson Diniz Teixeira de Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| |
Collapse
|
16
|
de Oliveira KA, Moreira Gomes MD, Vasconcelos RP, de Abreu ES, Fortunato RS, Carneiro Loureiro AC, Coelho-de-Souza AN, de Oliveira RSB, de Freitas CDT, Ramos MV, de Oliveira AC. Phytomodulatory proteins promote inhibition of hepatic glucose production and favor glycemic control via the AMPK pathway. Biomed Pharmacother 2019; 109:2342-2347. [DOI: 10.1016/j.biopha.2018.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
|
17
|
Restuati M, Diningrat DS. Antimicrobial Profile of Premna pubescens. Blume and Centella asiatica Extracts Against Bacteria and Fungi Pathogens. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.271.275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|