1
|
Horr M, Sommerfeld S, Silva MV, Fonseca BB. A fast and simple protocol to anaesthesia in chicken embryos. Exp Anim 2023; 72:294-301. [PMID: 36642540 PMCID: PMC10435353 DOI: 10.1538/expanim.22-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Chicken embryos (CE) are an experimental model used as an important life science research tool worldwide, and then, adequate anesthetic protocols must be adopted to avoid the unjustifiable suffering of animals. Thus, our objective was to evaluate different anesthetic protocols in CEs using an easy inoculation route, the shell membrane (SM). We adopted the heart rate by pulse and the CE movements as a parameter of pain by assessing the vase in the chorioallantoic membrane (CAM) through the shell by a sensor of a multiparametric monitor. CEs were distributed into the following groups: (i) association of ketamine (5 mg/CE), midazolam (0.05 mg/CE) and morphine (0.15 mg/CE); (ii) ketamine (5 mg/CE) and xylazine (0.125 mg/CE); (iii) xylazine (0.0125 mg/CE) and morphine (0.15 mg/CE). The stress method used to test the anesthetic potential of the drugs was high temperature stimulation, keeping the CEs 10 cm from the fire of a Bussen nozzle for 30 s. In this experimental model, associations between different drugs decreased the pulse and the movement, indicating possible sedation. After treatment, the CE's submitted to the stress method had the heart rate and movements kept low in the groups ketamine-midazolam-morphine and ketamine-xylazine, while the non-drug-treated group increased heart rate. In a group treated with xylazine-morphine, the heart rate did not decrease, but the movement decreased after the stimulus. As the best results were the combinations of ketamine-midazolam-morphine and ketamine-xylazine, we recommend these associations for use in embryos in the final third of embryonic development in experimental protocols and euthanasia.
Collapse
Affiliation(s)
- Mônica Horr
- School of Veterinary Medicine, Federal University of Uberlandia, Rua Ceara - s/n Bloco 2 D Sala 57 Campus Umuarama, Uberlândia MG, 30402-018, Brazil
| | - Simone Sommerfeld
- School of Veterinary Medicine, Federal University of Uberlandia, Rua Ceara - s/n Bloco 2 D Sala 57 Campus Umuarama, Uberlândia MG, 30402-018, Brazil
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Avenida Professor José Inácio de Souza, Campus Umuarama, Bloco 8G, Uberlândia MG, 38405-330, Brazil
| | - Murilo V Silva
- School of Veterinary Medicine, Federal University of Uberlandia, Rua Ceara - s/n Bloco 2 D Sala 57 Campus Umuarama, Uberlândia MG, 30402-018, Brazil
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Avenida Professor José Inácio de Souza, Campus Umuarama, Bloco 8G, Uberlândia MG, 38405-330, Brazil
| | - Belchiolina B Fonseca
- School of Veterinary Medicine, Federal University of Uberlandia, Rua Ceara - s/n Bloco 2 D Sala 57 Campus Umuarama, Uberlândia MG, 30402-018, Brazil
| |
Collapse
|
2
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
3
|
Ucar A, Parlak V, Ozgeris FB, Yeltekin AC, Arslan ME, Alak G, Turkez H, Kocaman EM, Atamanalp M. Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: Mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155718. [PMID: 35525350 DOI: 10.1016/j.scitotenv.2022.155718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The prevalent exposition of metallic nanoparticles (MNPs) to the aquatic medium and their negative influence on human life is one of the major concerns global. Stress mechanization, as a non-specific and pervasive response, involves all physiological systems, particularly the closely interconnected neuroendocrine and immune systems. In this study, which was designed to obtain more data on the biological effects of ulexit, which prevents oxidative DNA damage by protecting against toxicity damage and offers new antioxidant roles. The concomitant use of ulexite (UX, as 18.75 mg/l) as a natural therapeutic agent against exposure to magnetic nanoparticles (Fe3O4-MNPs/0.013 ml/l) on Oncorhynchus mykiss was investigated for 96 h. The brain tissues were taken at the 48th and 96th hours of the trial period, the effects on neurotoxic, pro-inflammatory cytokine genes, antioxidant immune system, DNA and apoptosis mechanisms were analyzed. In the present study, it was determined that AChE activity and BDNF level in the brain tissue decreased over time in the Fe3O4-MNPs group compared to the control, and UX tried to depress this inhibition. While inhibition was determined in antioxidant system biomarkers (SOD, CAT, GPx, and GSH values), an induction was observed in lipid peroxidation indicators (MDA and MPO values) in Fe3O4-MNPs applied group. The same group data showed that TNF-α, IL-6, 8-OHdG and caspase-3 levels were increased, but Nrf-2 levels were decreased. The alterations in all biomarkers were found to be significant at the p < 0.05 level. In general, it was determined that Fe3O4-MNPs caused stress in O. mykiss and UX exhibited a positive effect on this stress management.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | | | - Mehmet Enes Arslan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Dosoky WM, Al-Banna AA, Zahran SM, Farag SA, Abdelsalam NR, Khafaga AF. Zinc oxide nanoparticles induce dose-dependent toxicosis in broiler chickens reared in summer season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54088-54107. [PMID: 35292898 PMCID: PMC9356964 DOI: 10.1007/s11356-022-19156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/06/2022] [Indexed: 05/05/2023]
Abstract
This research evaluates the effect of dietary zinc oxide nanoparticles' (ZnO NPs) supplementation on growth performance, immunity, oxidative antioxidative properties, and histopathological picture of broiler chicken reared in the summer season. A total of 224 1-day-old male Cobb chicks were randomly allocated to seven groups of dietary treatments (n = 32). Seven isocaloric and isonitrogenous diets were formulated. ZnO NPs were added to the basal diet at seven different levels, 0, 5, 10, 20, 40, 60, and 80 ppm/kg diet, respectively, for 35 days. Results indicated that live body weight (g) did not differ significantly (P > 0.05) between treatment groups, whereas compared to control, the 5 ppm ZnO NPs/kg diet recorded the highest live body weight at 21 and 35 days. No significant effects for the feed consumption (g/bird/period) and feed conversion ratio (g feed/g gain) among treated and control birds were observed. Hematological and immunological variables showed significant (P ≤ 0.05) dose-dependent modulations by ZnO NP supplementation. Significant (P ≤ 0.05) differences were observed in the phagocytic activity, phagocytic index, and IgM and IgG between the treatment groups, with the 5 and 10 ppm ZnO NPs/kg diet recording the best values, followed by the 20 ppm ZnO NPs/kg diet. Different supplementations had nonsignificant effects on the digestibility of nutrients (P ≤ 0.05). Histopathological pictures of the kidney, liver, and lymphoid organs, ultrastructural examination of muscle tissues, and expression of inflammatory cytokines showed dose-dependent morphological and structural changes. In conclusion, the ZnO NP supplementation in broiler diet to eliminate the heat stress hazards in summer season is recommended in dose level of not more than 10 ppm/kg diet.
Collapse
Affiliation(s)
- Waleed M. Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Aya A. Al-Banna
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soliman M. Zahran
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soha A. Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| |
Collapse
|
5
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
6
|
Elmahallawy EK, Fehaid A, EL-shewehy DMM, Ramez AM, Alkhaldi AAM, Mady R, Nasr NE, Arafat N, Hassanen EAA, Alsharif KF, Abdo W. S-Methylcysteine Ameliorates the Intestinal Damage Induced by Eimeria tenella Infection via Targeting Oxidative Stress and Inflammatory Modulators. Front Vet Sci 2022; 8:754991. [PMID: 35071376 PMCID: PMC8767015 DOI: 10.3389/fvets.2021.754991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Avian coccidiosis is one of the major parasitic diseases in the poultry industry. The infection is caused by Eimeria species, and its treatment relies mainly on the administration of anticoccidial drugs, which can result in drug resistance and side effects. The recent trends in avian coccidiosis treatment is directed to the development of a new therapy using herbal compounds. S-Methylcysteine (SMC) is considered one of the organosulfur compounds in garlic that showed promising activity in the treatment of different pathological conditions via a wide range of anti-inflammatory and antioxidant mechanisms. In this study, the anticoccidial activity of SMC was investigated in Eimeria tenella-infected chickens compared to diclazuril as a widely used anticoccidial drug. In this regard, 14-day-old broilers were divided into six groups (n = 18). The first group (G1) was the healthy control group, while the second group (G2) was the non-infected SMC group treated at a dose of 50 mg/kg b.w. (high dose). Moreover, the third group (G3) was the positive control group (infected and non-treated). The fourth group (G4) was the infected group treated with SMC of 25 mg/kg b.w. (low dose), while the fifth group (G5) was the infected group treated with SMC of 50 mg/kg b.w. (high dose). Conversely, the sixth group (G6) was the diclazuril-treated group. The anticoccidial effects of SMC and diclazuril were evaluated by counting oocysts and recording the body weight gain, feed conversion ratio, clinical signs, lesions, and mortality rate. Interestingly, SMC showed potent anticoccidial activity, which was exemplified by reduction of oocyst count. Furthermore, the biochemical, antioxidant, and anti-inflammatory parameters in the cecal tissues were restored toward their control levels in G4, G5, and G6. Histopathological observation of cecal tissues was consistent with the aforementioned results revealing the ameliorative effect of SMC against E. tenella infection. This study concluded novel findings in relation to the anticoccidial role of SMC as a plant-based compound against the E. tenella-induced coccidiosis in broiler chickens combined with its antioxidative and anti-inflammatory properties. Further studies for exploring the mechanistic pathways involved in this activity and the potential benefits from its use in association with conventional anticoccidial drugs are warranted.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Amany M. Ramez
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Rehab Mady
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nasr Elsayed Nasr
- Biochemistry and Clinical Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman A. A. Hassanen
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
7
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, Elshafey OI, Abdel-Aziem SH, Hassan NS. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57640-57656. [PMID: 34089164 DOI: 10.1007/s11356-021-14723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The green synthesis of metal nanoparticles is growing dramatically; however, the toxicity of these biosynthesized particles against living organisms is not fully explored. Therefore, this study was designed to synthesize and characterize TiO2-NPs, encapsulation and characterization thyme essential oil (ETEO), and determination of the bioactive constituents of ETEO using GC-MS and evaluate their protective role against TiO2-NPs-induced oxidative damage and genotoxicity in rats. Six groups of rats were treated orally for 30 days including the control group, TiO2-NPs (300 mg/kg b.w)-treated group, ETEO at low (50 mg/kg b.w) or high dose (100 mg/kg b.w)-treated groups, and TiO2-NPs plus ETEO at the two doses-treated groups. Blood and tissues were collected for different assays. The GC-MS results indicated the presence of 21 compounds belonging to phenols, terpene derivatives, and heterocyclic compounds. The synthesized TiO2-NPs were 45 nm tetragonal particles with a zeta potential of -27.34 mV; however, ETEO were 119 nm round particles with a zeta potential of -28.33 mV. TiO2-NPs administration disturbs the liver and kidney markers, lipid profile, cytokines, oxidative stress parameters, the apoptotic and antioxidant hepatic mRNA expression, and induced histological alterations in the liver and kidney tissues. ETEO could improve all these parameters in a dose-dependent manner. It could be concluded that ETEO is a promising candidate for the protection against TiO2-NPs and can be applied safely in food applications.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E Mohammed
- Zoology Department, Faculty of Science, Arish University, Arish, Egypt
| | - Ola I Elshafey
- Physical Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
8
|
Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53767-53780. [PMID: 34037932 DOI: 10.1007/s11356-021-14587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans. Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100 mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated. Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration, necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results, sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt.
| | - Basma A Elkhadrawey
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Badr E El-Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Hesham S Elsabbagh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Nermeen B El-Borai
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| |
Collapse
|
9
|
Grambow E, Sorg H, Sorg CGG, Strüder D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med Sci (Basel) 2021; 9:medsci9030055. [PMID: 34449673 PMCID: PMC8395822 DOI: 10.3390/medsci9030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of models are now available for the investigation of skin wound healing. These can be used to study the processes that take place in a phase-specific manner under both physiological and pathological conditions. Most models focus on wound closure, which is a crucial parameter for wound healing. However, vascular supply plays an equally important role and corresponding models for selective or parallel investigation of microcirculation regeneration and angiogenesis are also described. In this review article, we therefore focus on the different levels of investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and its parameters.
Collapse
Affiliation(s)
- Eberhard Grambow
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Heiko Sorg
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany;
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309 Dortmund, Germany
| | - Christian G. G. Sorg
- Chair of Management and Innovation in Health Care, Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany;
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
10
|
Saad AH, Ahmed MS, Aboubakr M, Ghoneim HA, Abdel-Daim MM, Albadrani GM, Arafat N, Fadl SE, Abdo W. Impact of Dietary or Drinking Water Ruminococcus sp. Supplementation and/or Heat Stress on Growth, Histopathology, and Bursal Gene Expression of Broilers. Front Vet Sci 2021; 8:663577. [PMID: 34268345 PMCID: PMC8275643 DOI: 10.3389/fvets.2021.663577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
This research was conducted to evaluate the impact of dietary or drinking water Ruminococcus sp. supplementation and/or heat stress (HS) on the growth, serum biochemistry, tissue antioxidant, phagocytic assay, histopathology, and bursa gene expression of broilers. Day-old broiler chicks were allotted into six groups according to HS and/or Ruminococcus with or without enzyme supplementation. The first group was the control one, with a formulated diet and normal environmental temperature but without any supplement. The second group fed on Ruminococcus-supplemented diet (1 kg/kg diet). The third group fed on a formulated diet without supplement, and Ruminococcus and digestive enzymes were given in drinking water (0.1 ml/L). The fourth one was the heat stress group, with a normal formulated diet. The fifth and the sixth groups served as second and third groups, respectively, but with heat stress. The results of this experiment indicated that thermal temperature negatively affected the parameters of growth performance, serum biochemical, tissue antioxidants, and phagocytic assay. Moreover, heat stress led to pathological lesions in the internal organs and affected the expression of some genes related to heat stress, including proapoptotic genes such as caspase8 and bax, inflammatory genes such as NF-κβ1, and heat shock protein such as HSP 70 in the bursal tissue. These bad effects and abnormalities were mitigated by Ruminococcus alone or with enzyme supplementation, which improved all the above-mentioned parameters.
Collapse
Affiliation(s)
- Adel Hassan Saad
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Mohamed S Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed Aboubakr
- Pharmacology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Hanan A Ghoneim
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sabreen Ezzat Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh, Egypt
| | - Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
11
|
Sekar A, Yadav R, Kannaiyan P, Munuswamy-Ramanujam G. Evaluation of biopolymer-derived carbon dots as cancer diagnostic biomarkers for human monocyte cell lines ( THP-1). 3 Biotech 2021; 11:31. [PMID: 33457165 PMCID: PMC7782767 DOI: 10.1007/s13205-020-02568-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fluorescent carbon dots (C-dots) were fabricated from Anogeissus latifolia (Gum ghatti) gum extract using direct microwave pyrolysis method. The C-dots are fine-tuned concerning three parameters, viz., NaOH addition (presence and absence), microwave power, and irradiation time. C-dots optical properties were investigated through UV-visible (UV-Vis) and fluorescence spectroscopy. Using field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and Raman Spectroscopy, physiochemical properties of synthesized C-dots were inspected. The average size of C-dots was estimated to be 4.8 ± 2 nm and is amorphous. These C-dots displayed high solubility in an aqueous medium due to oxygen functionality, and showed good fluorescence stability to high-ionic concentration and varied pH. The fluorescence spectra outcomes specified that C-dots exhibited excitation-dependent emission behavior. Furthermore, the C-dots biological function was tested for cell biocompatibility and bioimaging. The cytotoxicity studies were performed on Vero cell lines and compared with THP-1 human monocyte cell lines at different concentrations. The results revealed good biocompatibility app. 80 and 90% for Vero and THP-1 cell lines even after 24 h incubation with the C-dots. Finally, by employing C-dots as the fluorescent tool, THP-1 cells were imaged successfully via a Confocal Laser Scanning Microscope (CLSM) in a concentration-dependent manner.
Collapse
Affiliation(s)
- Anithadevi Sekar
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059 India
| | - Rakhi Yadav
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059 India
| | - Pandian Kannaiyan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
12
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
13
|
Liu Y, Zhao H, Wang Y, Guo M, Mu M, Xing M. Arsenic (III) and/or copper (II) induces oxidative stress in chicken brain and subsequent effects on mitochondrial homeostasis and autophagy. J Inorg Biochem 2020; 211:111201. [PMID: 32805460 DOI: 10.1016/j.jinorgbio.2020.111201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/31/2022]
Abstract
As two quite complicated substances, arsenic (As) and copper (Cu) have polluted to the environment. As is highly toxic and could cause nerve damage. Cu is involved in the occurrence of oxidative stress. The brain is one of the main target organs of heavy metal toxicity, but the damage mechanism activated by As and/or Cu in the chicken brain has not been precisely researched. This study is designed to analyze the nervous system damage induced by As and/or Cu exposure from both structural and molecular levels. Under the As and/or Cu stress, local hemorrhage, inflammatory infiltration and mitochondrial damage were observed. Enzymes and non-enzyme antioxidants clearly show that the redox balance is deviated gradually. The results of real-time quantitative PCR and Western blotting revealed that there may be a cascading effect between oxidative stress and disruption of mitochondrial dynamics, the key protein of mitochondrial fusion has decreased and the fission protein has increased. The superposition of these two types of damage may activate the celluar autophagy pathway, the up-regulation of autophagy related genes (ATGs) levels could be observed. All data indicated that excessive As and/or Cu in the environment may pose a threat to the nervous system of poultry. These findings have neurophysiological meaning for exploring cross-contamination of As and Cu in the environment, and offering precautions to economic losses and negative effects on the health of animals and humans. In addition, it provides a reference for feed preparation and environmental protection in agricultural production.
Collapse
Affiliation(s)
- Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang Province, China.
| |
Collapse
|
14
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
15
|
Li Y, Yang M, Meng T, Niu Y, Dai Y, Zhang L, Zheng X, Jalava P, Dong G, Gao W, Zheng Y. Oxidative stress induced by ultrafine carbon black particles can elicit apoptosis in vivo and vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135802. [PMID: 31887498 DOI: 10.1016/j.scitotenv.2019.135802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Although carbon black (CB) particles have potential hazards to human health, the toxicological studies on CB are still limited. The purpose of this study was to investigate the effect of oxidative stress induced by ultrafine CB particles on apoptosis in vivo and vitro. Male C57BL/6 mice were inhalation exposed to CB for 28 days, and 16HBE cells were treated by CB particles and also added antioxidant (NAC). Antioxidant enzymes activities (CAT, SOD, GSH-Px) and ROS in the lungs and cells were evaluated. Apoptosis-related proteins (Bcl-2, Bax, Cleaved Caspase-3, pro-Caspase-3, Caspase-7, Caspase-8, Caspase-9, PARP-1) were tested by Western blot (WB), immunohistochemistry (IHC), and real-time PCR. The reduction of antioxidant enzymes activities and the addition of ROS in CB exposure groups were observed, and the gene and apoptosis-related proteins levels were increased in CB exposure mice. The results of CB-treated 16HBE cells were consistent with those of mice, and apoptosis rate was increased in CB-treated 16HBE cells. When the cells were treated with NAC, ROS induced by CB decreased, SOD and CAT activities of CB-treated 16HBE cells were increased. Apoptosis rate of 16HBE cells treated with NAC and CB was significantly decreased, and the expression of C-Caspase-3 was also decreased. Therefore, oxidative stress induced by ultrafine CB particles can elicit apoptosis in vivo and vitro. Antioxidants can significantly reduce oxidative damage and apoptosis induced by CB.
Collapse
Affiliation(s)
- Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Mo Yang
- School of Public Health, Qingdao University, Qingdao, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tao Meng
- School of Public Health, Sun Yat-sen University, Guangzhou, China; National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Zhang
- Weifang Medical University, 7166 Baotong Rd, Weifang 261053, China
| | - Xiaomei Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pasi Jalava
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, 3302 Health Sciences Center, HSC South, 64 Medical Center Drive Morgantown, WV 26506
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Hou L, Guan S, Jin Y, Sun W, Wang Q, Du Y, Zhang R. Cell metabolomics to study the cytotoxicity of carbon black nanoparticles on A549 cells using UHPLC-Q/TOF-MS and multivariate data analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134122. [PMID: 31505349 DOI: 10.1016/j.scitotenv.2019.134122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Carbon black nanoparticles (CBNPs) are core component of fine particulate matter (PM2.5) in the atmosphere. It was reported that the particle in the atmosphere with smaller size and the larger the specific surface area are easier to reach the deep respiratory tract or even the alveoli through the respiratory barrier and cause lung injury. Therefore, it has been believed that ultrafine or nanometer particles with more toxic than those with larger particle sizes. Moreover, it was confirmed that CBNPs could induce inflammation, oxidative stress and changes in cell signaling and gene expression in mammalian cells and organs. However, the cytotoxicity mechanism of them has been uncertain so far. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CBNPs on A549 cells. In the current research, the viabilities of A549 cells were detected by Cell Counting Kit-8 (CCK-8) assay. The further metabolomics studies were conducted to detect the cytotoxic effect of CBNPs on A549 cells with an IC50 value of 70 μg/mL for 48 h. Potential differential compounds were identified and quantified using a novel on-line acquisition method based on ultra-liquid chromatography quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF/MS). The cytotoxicity mechanism of CBNPs on A549 cells was evaluated by multivariate data analysis and statistics. As a result, a total of 32 differential compounds were identified between CBNPs exposure and control groups. In addition, pathway analysis showed the metabolic changes were involved in the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, histidine metabolism and so on. It is also suggested that CBNPs may induce cytotoxicity by affecting the normal process of energy metabolism and disturbing several vital signaling pathways and finally induce cell apoptosis.
Collapse
Affiliation(s)
- Ludan Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuai Guan
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yiran Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| | - Rong Zhang
- Department of Occupational and Environmental Health, The School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| |
Collapse
|
17
|
Hussein MMA, Gad E, Ahmed MM, Arisha AH, Mahdy HF, Swelum AAA, Tukur HA, Saadeldin IM. Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29074-29084. [PMID: 31392614 DOI: 10.1007/s11356-019-06091-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The present study aimed to examine the ameliorative effects of morin and rutin on the reproductive toxicity induced by titanium dioxide nanoparticles (TiO2NPs) in male rats. A total of seventy adult male Sprague-Dawley rats were randomly divided into seven groups, each comprising ten rats. Nanoreprotoxicity was induced by treating rats with TiO2NPs at a dosage of 300 mg/kg body weight for 30 days. Morin (30 mg/kg body weight) and rutin (100 mg/kg body weight) were co-administered with or without TiO2NPs to rats either individually or combined. Only distilled water was administered to the control group. The results showed that TiO2NPs enhanced oxidative stress, indicated by reduced levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in testicular tissues, and increased levels of the lipid peroxidation marker malondialdehyde (MDA). TiO2NPs significantly reduced the levels of sex hormones (testosterone, FSH, and LH), reduced sperm motility, viability, and sperm cell count, and increased sperm abnormalities, in addition to damaging the testicular histological architecture. TiO2NPs resulted in the downregulation of 17β-HSD and the upregulation of proapoptotic gene (Bax) transcripts in the testicular tissues. Conversely, morin and/or rutin had a protective effect on testicular tissue. They effectively counteracted TiO2NP-induced oxidative damage and morphological injury in the testis by conserving the endogenous antioxidant mechanisms and scavenging free radicals. Thus, we suggest that morin and rutin could be used to alleviate the toxicity and oxidative damage associated with TiO2NP intake.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Emad Gad
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hasnaa F Mahdy
- Department of Chemistry, Faculty of Sciences, Suez Canal University, Ismailia, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
18
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
El-Kassas S, Abdo SE, El-Naggar K, Abdo W, Kirrella AAK, Nashar TO. Ameliorative effect of dietary supplementation of copper oxide nanoparticles on inflammatory and immune reponses in commercial broiler under normal and heat-stress housing conditions. J Therm Biol 2018; 78:235-246. [PMID: 30509642 DOI: 10.1016/j.jtherbio.2018.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 12/31/2022]
Abstract
Heat stress (HS) is one of the most serious adverse conditions that affect poultry causing immunosuppression and decreasing production. In a novel approach, we investigated effects of supplementing copper oxide nanoparticles (CuO-NPs) on the immune response in two commercial broiler strains (Ross 308 and Cobb 500). At one day old, birds were divided into 3 groups with 3 replicates for each. The first group received diet supplemented with 100% of their recommended copper requirements as CuO while, in the second and third groups, birds were given diets supplemented with 100% and 50% of the recommended Cu requirements in the form of CuO-NPs, respectively. At age of 21 day, each group was subdivided randomly into normal (24 ± 2 °C) and heat stressed (33 ± 2 °C for 5 h per day for two successive weeks) groups. Under normal housing temperature, CuO-NPs, significantly enhanced the immune response in these birds, compared to CuO shown by the increased levels of phagocytic activity (PA), lysozyme serum activity, and by upregulating immune-modulator genes including NF-κβ, PGES, IL-1β, TGF-1β, IFN-γ, BAX and CASP8. The responses were different between the two studied strains especially at the level of gene expression. In HS birds, supplementation of CuO-NPs reduced HS induced inflammatory conditions, as shown by lower gene expression levels, lower degenerative changes in the spleen, and altered heterophils/lymphocytes (H/L) ratio. We suggest CuO-NPs supplementation, especially in those chickens that received diet supplemented with 50% of their recommended Cu requirements, could be used under normal housing temperature to enhance the birds' immune response, and during HS to lower heat stress-induced degenerative changes depending on the magnitude of the HS.
Collapse
Affiliation(s)
- Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Post Box 33516, Egypt.
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Walied Abdo
- Department of Pathology, College of Veterinary Medicine, Kafrelsheikh University,Egypt
| | - Abeer A K Kirrella
- Poultry Physiology, Poultry production Department, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Toufic O Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|