1
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Wang X, Zhang Q, Ren Y, Liu C, Gao H. Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia. Curr Protein Pept Sci 2024; 25:527-538. [PMID: 38561606 DOI: 10.2174/0113892037284176240302052521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qi Zhang
- Department of Pharmacy, Shandong First Medical University, Jinan, Shandong, China
| | - Yi Ren
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Chao Liu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Murrieta-Coxca JM, Barth E, Fuentes-Zacarias P, Gutiérrez-Samudio RN, Groten T, Gellhaus A, Köninger A, Marz M, Markert UR, Morales-Prieto DM. Identification of altered miRNAs and their targets in placenta accreta. Front Endocrinol (Lausanne) 2023; 14:1021640. [PMID: 36936174 PMCID: PMC10022468 DOI: 10.3389/fendo.2023.1021640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.
Collapse
Affiliation(s)
| | - Emanuel Barth
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Faculty of Mathematics and Computer Science, Bioinformatics Core Facility, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Tanja Groten
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
- University Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Manja Marz
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Fritz Lipman Institute (FLI), Leibniz Institute for Age Research, Jena, Germany
| | - Udo R. Markert
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| | - Diana M. Morales-Prieto
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| |
Collapse
|
4
|
Ning W, Wu B, Chen Y, Lian J, Chen Y. Role of microRNAs regulating trophoblast cell function in the pathogenesis of pre‑eclampsia (Review). Exp Ther Med 2022; 25:50. [PMID: 36588809 PMCID: PMC9780518 DOI: 10.3892/etm.2022.11749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Pre-eclampsia (PE) is a complicated pregnancy-specific disease and is considered the primary reason for maternal and foetal mortality and morbidity. PE has a multifactorial pathogenesis but the causes of PE remain unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance of these molecular pathways can lead to severe placental lesions and pregnancy complications. Certain microRNAs (miRs) are abnormally expressed in PE, with several miRs involved in the regulation of pregnancy-associated genes. The present review discusses the miRs regulating trophoblast function, how they affect the pathogenesis of PE and evaluating the possibility of miRs in screening, diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Wenwen Ning
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bin Wu
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yijie Chen
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiejing Lian
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiming Chen
- Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, P.R. China,Prenatal Diagnosis and Screening Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, P.R. China,Correspondence to: Professor Yiming Chen, Prenatal Diagnosis and Screening Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 369 Kunpeng Road, Shangcheng, Hangzhou, Zhejiang 310008, P.R. China
| |
Collapse
|
5
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
6
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
8
|
Légaré C, Clément AA, Desgagné V, Thibeault K, White F, Guay SP, Arsenault BJ, Scott MS, Jacques PÉ, Perron P, Guérin R, Hivert MF, Bouchard L. Human plasma pregnancy-associated miRNAs and their temporal variation within the first trimester of pregnancy. Reprod Biol Endocrinol 2022; 20:14. [PMID: 35031065 PMCID: PMC8759232 DOI: 10.1186/s12958-021-00883-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND During pregnancy, maternal metabolism undergoes substantial changes to support the developing fetus. Such changes are finely regulated by different mechanisms carried out by effectors such as microRNAs (miRNAs). These small non-coding RNAs regulate numerous biological functions, mostly through post-transcriptional repression of gene expression. miRNAs are also secreted in circulation by numerous organs, such as the placenta. However, the complete plasmatic microtranscriptome of pregnant women has still not been fully described, although some miRNA clusters from the chromosome 14 (C14MC) and the chromosome 19 (C19MC and miR-371-3 cluster) have been proposed as being specific to pregnancy. Our aims were thus to describe the plasma microtranscriptome during the first trimester of pregnancy, by assessing the differences with non-pregnant women, and how it varies between the 4th and the 16th week of pregnancy. METHODS Plasmatic miRNAs from 436 pregnant (gestational week 4 to 16) and 15 non-pregnant women were quantified using Illumina HiSeq next-generation sequencing platform. Differentially abundant miRNAs were identified using DESeq2 package (FDR q-value ≤ 0.05) and their targeted biological pathways were assessed with DIANA-miRpath. RESULTS A total of 2101 miRNAs were detected, of which 191 were differentially abundant (fold change < 0.05 or > 2, FDR q-value ≤ 0.05) between pregnant and non-pregnant women. Of these, 100 miRNAs were less and 91 miRNAs were more abundant in pregnant women. Additionally, the abundance of 57 miRNAs varied according to gestational age at first trimester, of which 47 were positively and 10 were negatively associated with advancing gestational age. miRNAs from the C19MC were positively associated with both pregnancy and gestational age variation during the first trimester. Biological pathway analysis revealed that these 191 (pregnancy-specific) and 57 (gestational age markers) miRNAs targeted genes involved in fatty acid metabolism, ECM-receptor interaction and TGF-beta signaling pathways. CONCLUSION We have identified circulating miRNAs specific to pregnancy and/or that varied with gestational age in first trimester. These miRNAs target biological pathways involved in lipid metabolism as well as placenta and embryo development, suggesting a contribution to the maternal metabolic adaptation to pregnancy and fetal growth.
Collapse
Affiliation(s)
- Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada
| | - Kathrine Thibeault
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédérique White
- Department of Biology, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon-Pierre Guay
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada
- Department of Medicine, FMHS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada.
- Clinical Department of Laboratory Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Pavillon des Augustines, 305 rue St-Vallier, Saguenay, QC, G7H 5H6, Canada.
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, QC, Canada.
| |
Collapse
|
9
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Baker BC, Lui S, Lorne I, Heazell AEP, Forbes K, Jones RL. Sexually dimorphic patterns in maternal circulating microRNAs in pregnancies complicated by fetal growth restriction. Biol Sex Differ 2021; 12:61. [PMID: 34789323 PMCID: PMC8597318 DOI: 10.1186/s13293-021-00405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction (FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex. Methods miRNA expression profiles were assessed in maternal serum (> 36 weeks’ gestation) from women delivering a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control participants (AGA; IBC = 20–80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen (hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were performed to predict the potential functions of altered miRNAs. Results Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analyses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies (p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including angiogenesis, placental growth, nutrient transport and apoptosis. Conclusions These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in utero conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00405-z. Detection and treatment of pregnancies at high risk of fetal growth restriction (FGR) and stillbirth remains a major obstetric challenge; circulating maternal serum microRNAs (miRNAs) offer potential as novel biomarkers. Unbiased analysis of serum miRNAs in women in late pregnancy identified a specific profile of circulating miRNAs in women with a growth-restricted infant. Some altered miRNAs (miR-28-5p, miR-301a-3p) showed sexually dimorphic expression in FGR pregnancies and others a fetal-sex dependent association to a hormonal marker of placental dysfunction (miR-454-3p, miR-29c-3p). miR-301a-3p and miR-28-5p could potentially be used to predict FGR specifically in pregnancies with a male or female baby, respectively, however larger cohort studies are required. Further investigations of these miRNAs and their relationship to placental dysfunction will lead to a better understanding of the pathophysiology of FGR and why there is differing susceptibility of male and female fetuses to FGR and stillbirth.
Collapse
Affiliation(s)
- Bernadette C Baker
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.
| | - Sylvia Lui
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,Division of Inflammation and Repair, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabel Lorne
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Alexander E P Heazell
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Rebecca L Jones
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Liu S, Sun Y, Tang Y, Hu R, Zhou Q, Li X. IL-25 promotes trophoblast proliferation and invasion via binding with IL-17RB and associated with PE. Hypertens Pregnancy 2021; 40:209-217. [PMID: 34264790 DOI: 10.1080/10641955.2021.1950177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Interleukin-25 is a Th2 interleukin and has been shown to influence cell behavior. This study aims to illustrate its affection on extravillous trophoblasts function and association with PE. Methods qPCR and immunohistochemistry demonstrate IL-25 and IL-17RB expression. CCK-8 test and transwell were to access the behavior of HTR8 in the presence or absence of IL-25, IL-25 neutralization antibody. Results EVTs and HTR8 express IL-25 and IL-17RB. IL-25 promotes proliferation and invasion (p< 0.05),which was abolished in the presence of IL-25Ab (p< 0.05). Conclusion: IL-25 may contribute to promote trophoblast invasion and proliferation and abnormal decline of IL-25 might be associated with PE. METHODS qPCR and immunohistochemistry (IHC) were used to demonstrate IL-25 and its receptor IL-17RB expression in primary human trophoblasts of normal first- and third- trimester, as well as third-trimester of PE. CCK-8 test and transwell invasion system in vitro were applied separately to access the behavior of trophoblast cell line (HTR8) in the presence or absence of IL-25, IL-25 neutralization antibody (IL-25 Ab). RESULTS EVTs and HTR8 express IL-25 and IL-17RB. The expressions increase in third-trimester during normal pregnancy. In PE, both of IL-25 and IL-17RB expressions decrease (p< 0.05). IL-25 for 24 h promoted HTR8 proliferation and invasion (p< 0.05). The effect was abolished in the presence of IL-25Ab (p< 0.05). CONCLUSION This study demonstrates that IL-25 may contribute to promote trophoblast invasion and proliferation and abnormal decline of IL-25 might be associated with PE.
Collapse
Affiliation(s)
- Siyu Liu
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Sun
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Rong Hu
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Qiongjie Zhou
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Xiaotian Li
- Department of obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
13
|
Ibáñez CF. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7. FEBS J 2021; 289:5776-5797. [PMID: 34173336 DOI: 10.1111/febs.16090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
ALK7 (Activin receptor-like kinase 7) is a member of the TGF-β receptor superfamily predominantly expressed by cells and tissues involved in endocrine functions, such as neurons of the hypothalamus and pituitary, pancreatic β-cells and adipocytes. Recent studies have begun to delineate the processes regulated by ALK7 in these tissues and how these become integrated with the homeostatic regulation of mammalian metabolism. The picture emerging indicates that ALK7's primary function in metabolic regulation is to limit catabolic activities and preserve energy. Aside of the hypothalamic arcuate nucleus, the function of ALK7 elsewhere in the brain, particularly in the cerebellum, where it is abundantly expressed, remains to be elucidated. Although our understanding of the basic molecular events underlying ALK7 signaling has benefited from the vast knowledge available on TGF-β receptor mechanisms, how these connect to the physiological functions regulated by ALK7 in different cell types is still incompletely understood. Findings of missense and nonsense variants in the Acvr1c gene, encoding ALK7, of some mouse strains and human subjects indicate a tolerance to ALK7 loss of function. Recent discoveries suggest that specific inhibitors of ALK7 may have therapeutic applications in obesity and metabolic syndrome without overt adverse effects.
Collapse
Affiliation(s)
- Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing, China.,Department of Physiology and Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
14
|
Adu-Gyamfi EA, Ding YB, Wang YX. Regulation of placentation by the transforming growth factor beta superfamily†. Biol Reprod 2021; 102:18-26. [PMID: 31566220 DOI: 10.1093/biolre/ioz186] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, there is increased expression of some cytokines at the fetal-maternal interface; and the clarification of their roles in trophoblast-endometrium interactions is crucial to understanding the mechanism of placentation. This review addresses the up-to-date reported mechanisms by which the members of the transforming growth factor beta superfamily regulate trophoblast proliferation, differentiation, and invasion of the decidua, which are the main phases of placentation. The available information shows that these cytokines regulate placentation in somehow a synergistic and an antagonistic manner; and that dysregulation of their levels can lead to aberrant placentation. Nevertheless, prospective studies are needed to reconcile some conflicting reports; and identify some unknown mediators involved in the actions of these cytokines before their detailed mechanistic regulation of human placentation could be fully characterized. The TGF beta superfamily are expressed in the placenta, and regulate the process of placentation through the activation of several signaling pathways.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Yang Y, Shang H. Silencing lncRNA-DGCR5 increased trophoblast cell migration, invasion and tube formation, and inhibited cell apoptosis via targeting miR-454-3p/GADD45A axis. Mol Cell Biochem 2021; 476:3407-3421. [PMID: 33973132 DOI: 10.1007/s11010-021-04161-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
Long noncoding RNA (lncRNA)-DGCR5 has been recognized as a potential tumor progression regulator, while its expression and specific functions in preeclampsia (PE) development remain unveiled. The expressions of miR-454-3p, lncRNA-DiGeorge syndrome critical region gene 5 (DGCR5) and growth arrest and DNA damage protein-inducible 45A (GADD45A) in placental tissues from PE patients or HTR-8/SVneo cells were assessed by Western blot or qRT-PCR. Dual-luciferase reporter assay determined the binding relations between miR-454-3p and GADD45A and between miR-454-3p and lncRNA-DGCR5. The viability, apoptosis, migration, invasiveness and tube formation of HTR-8/SVneo cell were evaluated using cell counting kit (CCK)-8, Annexin-V/Propidium iodide staining, wound healing, transwell and tube formation assays, respectively. miR-454-3p was low-expressed in PE tissue, and upregulation of miR-454-3p increased viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis. Then, miR-454-3p was found to directly target GADD45A which was high-expressed in PE tissues. Overexpressing GADD45A decreased the viability and inhibited the migration, invasion and tube formation of HTR-8/SVneo cells while enhancing apoptosis, and it neutralized the effect of miR-454-3p upregulation. In turn, miR-454-3p upregulation reversed the effect of GADD45A overexpression. Meanwhile, miR-454-3p could also target lncRNA-DGCR5. Silencing lncRNA-DGCR5 increased miR-454-3p expression and cell viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis, and it counteracted the effect of miR-454-3p downregulation. As usual, miR-454-3p downregulation reversed the effect of lncRNA-DGCR5 silencing. To conclude, silencing lncRNA-DGCR5 increased viability, promoted migration, invasion and tube formation, and inhibited apoptosis in HTR-8/SVneo cells by rescuing the inhibition of GADD45A expression caused by miR-454-3p.
Collapse
Affiliation(s)
- Yanlin Yang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, No.99, Longcheng Street, Taiyuan, 030032, China.
| | - Haixia Shang
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital Shanxi Academy of Medical Sciences, No.99, Longcheng Street, Taiyuan, 030032, China
| |
Collapse
|
16
|
Chen A, Yu R, Jiang S, Xia Y, Chen Y. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia. Front Physiol 2021; 12:659638. [PMID: 33995125 PMCID: PMC8121253 DOI: 10.3389/fphys.2021.659638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Preeclampsia is a clinical syndrome characterized by multiple-organ dysfunction, such as maternal hypertension and proteinuria, after 20 weeks of gestation. It is a common cause of fetal growth restriction, fetal malformation, and maternal death. At present, termination of pregnancy is the only way to prevent the development of the disease. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are involved in important pathological and physiological functions in life cycle activities including ontogeny, reproduction, apoptosis, and cell reprogramming, and are closely associated with human diseases. Accumulating evidence suggests that non-coding RNAs are involved in the pathogenesis of preeclampsia through regulation of various physiological functions. In this review, we discuss the current evidence of the pathogenesis of preeclampsia, introduce the types and biological functions of non-coding RNA, and summarize the roles of non-coding RNA in the pathophysiological development of preeclampsia from the perspectives of oxidative stress, hypoxia, angiogenesis, decidualization, trophoblast invasion and proliferation, immune regulation, and inflammation. Finally, we briefly discuss the potential clinical application and future prospects of non-coding RNA as a biomarker for the diagnosis of preeclampsia.
Collapse
Affiliation(s)
- Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shiwen Jiang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
17
|
Zhao X, Liu F, Zhang J, Zhang J, Zhang L, Chen L. LINC01128 - miR-16 interaction regulates the migration and invasion of human chorionic trophoblast cells. Hypertens Pregnancy 2021; 40:152-161. [PMID: 33881945 DOI: 10.1080/10641955.2021.1917602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: Pre-eclampsia (PE) is a major complication of pregnancy, but its pathogenesis is unclear. This study explored the role of LINC01128 in the progression of PE, and its interaction with miR-16 on the behaviors of trophoblasts.Methods: The mRNA levels of LINC01128 and miR-16 in placental tissues and HTR-8/SVneo cells were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit (CCK)-8, wound healing assay and transwell assay were used to detect proliferation, migration and invasion. E-Cadherin, Vimentin, Matrix metalloproteinase 2 (MMP2) and MMP9 protein expressions were detected by Western blot. The correlation between LINC01128 and miR-16 was determined and verified by starBase and dual-luciferase assay.Results: The expression of LINC01128 was downregulated in PE. Overexpression of LINC01128 promoted LINC01128 expression, cell proliferation, migration, invasion and the expressions of Vimentin, MMP2 and MMP9, but inhibited the expression of E-Cadherin. SiLINC01128 showed opposite effects. MiR-16 interacted with LINC01128, and miR-16 was high-expressed in PE placentae. MiR-16 inhibitor promoted cell proliferation, migration, invasion and related protein expressions, but inhibited the expression of E-Cadherin. However, siLINC01128 inhibited the regulatory effect of miR-16 inhibitor on HTR-8/Svneo cells.Conclusion: LINC01128/miR-16 is involved in HTR-8/SVneo cells by regulating the migration and invasion of human chorionic trophoblast cells.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Fei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Jianhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Ludan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| | - Lin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, China
| |
Collapse
|
18
|
Zhu H, Wang C. HDAC2-mediated proliferation of trophoblast cells requires the miR-183/FOXA1/IL-8 signaling pathway. J Cell Physiol 2021; 236:2544-2558. [PMID: 33164209 DOI: 10.1002/jcp.30026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Pre-eclampsia (PE) is a major cause of maternal and perinatal death. Previous research has indicated the role of histone deacetylase 2 (HDAC2) in the pathogenesis of PE but the relevant molecular mechanisms are unknown. However, there is hitherto little information concerning the molecular mechanism behind HDAC2 in PE. Herein, we hypothesized that HDAC2 promotes trophoblast cell proliferation and this requires the involvement of microRNA-183 (miR-183), forkhead box protein A1 (FOXA1), and interleukin 8 (IL-8). We collected placental specimens from 30 PE affected and 30 normal pregnant women. HDAC2 and FOXA1 were poorly expressed while miR-183 and IL-8 were highly expressed in placental tissues in PE. In vitro, HDAC2 overexpression enhanced the proliferation, migration, and invasion of human trophoblast cells HTR-8/SVNEO. HDAC2 inhibited the expression of miR-183 by diminishing H4 acetylation in the miR-183 promoter region. miR-183 inhibition by its specific inhibitor increased the expression of FOXA1 and thus enhanced HTR-8/SVNEO cell proliferation, migration, and invasion. FOXA1, a transcriptional factor, enhanced HTR-8/SVNEO cell proliferation, migration, and invasion by inhibiting the transcription of IL-8. We also observed HDAC2 knockdown was lost upon FOXA1 overexpression, suggesting that HDAC2 could promote HTR-8/SVNEO proliferation, migration, and invasion through the miR-183/FOXA1/IL-8 pathway. In summary, the results highlighted the role of the HDAC2/miR-183/FOXA1/IL-8 pathway in PE pathogenesis and thus suggest a novel molecular target for PE.
Collapse
Affiliation(s)
- Hanhong Zhu
- Obstetrics Department, Linyi People's Hospital, Linyi, China
| | - Changxiu Wang
- Obstetrics Department, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
20
|
Wang Z, Yan K, Ge G, Zhang D, Bai J, Guo X, Zhou J, Xu T, Xu M, Long X, Hao Y, Geng D. Exosomes derived from miR-155-5p-overexpressing synovial mesenchymal stem cells prevent osteoarthritis via enhancing proliferation and migration, attenuating apoptosis, and modulating extracellular matrix secretion in chondrocytes. Cell Biol Toxicol 2021; 37:85-96. [PMID: 33099657 DOI: 10.1007/s10565-020-09559-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Synovial mesenchymal stem cells (SMSCs) have the potential to attenuate osteoarthritis (OA)-induced injury. The role and mechanism of SMSC-derived exosomes (SMSC-Exos), pivotal paracrine factors of stem cells, in OA-associated injury remain unclear. We aimed to confirm the effect of SMSC-Exos with specific modifications on OA-induced damage and to investigate the potential molecular mechanisms. Exosomes derived from miR-155-5p-overexpressing SMSCs (SMSC-155-5p-Exos) and SMSCs (SMSC-Exos) were isolated and characterized. CCK-8, Transwell, and Western blot analyses were used to detect proliferation, migration, extracellular matrix (ECM) secretion, and apoptosis of osteoarthritic chondrocytes. The therapeutic effect of exosomes in a mouse model of OA was examined using immunohistochemical staining and OARSI scores. SPSS 17.0 and GraphPad software were used for all statistical analyses in this study. The SMSC-Exos enhanced the proliferation and migration and inhibited the apoptosis of osteoarthritic chondrocytes but had no effect on ECM secretion. The miR-155-5p-overexpressing exosomes showed common characteristics of exosomes in vitro and further promoted ECM secretion by targeting Runx2. Thus, the SMSC-155-5p-Exos promoted proliferation and migration, suppressed apoptosis and enhanced ECM secretion of osteoarthritic chondrocytes, and effectively prevented OA in a mouse model. In addition, overexpression of Runx2 partially reversed the effect of the SMSC-155-5p-Exos on osteoarthritic chondrocytes. Given the insufficient effect of the SMSC-Exos on the ECM secretion of osteoarthritic chondrocytes, we modified the SMSM-Exos and demonstrated that the SMSC-155-5p-Exos could prevent OA. Exosomes derived from modified SMSCs may be a new treatment strategy to prevent OA. Graphical abstract.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China
| | - Kai Yan
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China
| | - Di Zhang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China
| | - Xiaobin Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China
| | - Tianpeng Xu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China
| | - Menglei Xu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China
| | - Xiao Long
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, 242, Guangji Road, 215006, Suzhou, People's Republic of China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188, Shizi Road, 215006, Suzhou, People's Republic of China.
| |
Collapse
|
21
|
Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation 2021; 17:240-248. [PMID: 34393443 PMCID: PMC8340720 DOI: 10.6026/97320630017240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are single-stranded, non-coding RNA molecules, regulate gene expression at the post-transcriptional level. They are expressed in the human body and have a significant impact on the different processes of pathological illness. A developing placenta undergoes a series of stages after successful fertilization, such as cell division, migration, adhesion, apoptosis, and angiogenesis. MicroRNAs dysregulation in placenta has been linked to pregnancy-related complications such as preeclampsia. Therefore, it is of interest to document known information (list of microRNA) on this issue in the development of biological tools for diagnosis, treatment and prevention of the disease.
Collapse
Affiliation(s)
- Abdifatah Mohamed Nuh
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Yan You
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Min Ma
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| |
Collapse
|
22
|
Elevated MicroRNA 183 Impairs Trophoblast Migration and Invasiveness by Downregulating FOXP1 Expression and Elevating GNG7 Expression during Preeclampsia. Mol Cell Biol 2020; 41:MCB.00236-20. [PMID: 33139493 DOI: 10.1128/mcb.00236-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of uncertain etiology that is the leading cause of maternal and fetal morbidity or mortality. The dysregulation of microRNAs (miRNAs) has been highlighted as a potential factor involved in the development of PE. Therefore, our study investigated a novel miRNA, miRNA 183 (miR-183), and its underlying association with PE. Expression of miR-183, forkhead box P1 (FOXP1), and G protein subunit gamma 7 (GNG7) in placental tissues of patients with PE was determined. Gain- and loss-of-function experiments were conducted to explore modulatory effects of miR-183, FOXP1, and GNG7 on the viability, invasion, and angiogenesis of trophoblast cells in PE. Finally, we undertook in vivo studies to explore effects of FOXP1 in the PE model. The results revealed suppressed expression of FOXP1 and significant elevations in miR-183 and GNG7 expression in placental tissues of PE patients. FOXP1 was observed to promote proliferation, invasion, and angiogenesis in human chorionic trophoblastic cells. miR-183 resulted in depletion of FOXP1 expression, while FOXP1 was capable of restraining GNG7 expression and promoting the mTOR pathway. The findings confirmed the effects of FOXP1 on PE. In conclusion, miR-183 exhibits an inhibitory role in PE through suppression of FOXP1 and upregulation of GNG7.
Collapse
|
23
|
Shu C, Yu X, Cheng S, Jing J, Hu C, Pang B. Pristimerin Suppresses Trophoblast Cell Epithelial-Mesenchymal Transition via miR-542-5p/EGFR Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4659-4670. [PMID: 33173276 PMCID: PMC7646443 DOI: 10.2147/dddt.s274595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
Background Ectopic pregnancy (EP) is an ectopic embryo implantation occurred outside the uterine cavity. Nowadays, more attention have garnered in fast and effective treatment with less side effects. Pristimerin is known as the clinical application for anti-cancer, and the effect on EP therapy is still unclear. Materials and Methods Trophoblast cell line HTR-8/SVneo was used; then, we performed cell counting kit-8 assay, wound healing assay, flow cytometry and real-time polymerase chain reaction analysis (RT-PCR) to detect the cell viability, migration ability, apoptosis and epithelial–mesenchymal transition (EMT) under pristimerin treatment. In addition, public bioinformatic database was used to discover the connection between molecular and genes. Finally, we used miRNA transfection and RT-PCR techniques to determine the underlying molecular mechanism. Results We revealed that pristimerin inhibited trophoblast cells proliferation, migration and EMT, while induced trophoblast cell apoptosis. Furthermore, expression of miR-542-5p, AGO2 and EGFR was suppressed in HTR-8/SVneo cells post pristimerin treatment, and miR-542-5p silence showed the same effect. Combing pristimerin treatment and miR-542-5p silence showed a synergistic action. Conclusion Pristimerin could be an effective treatment to block embryo implantation by miR-542-5p and EGFR down-regulation.
Collapse
Affiliation(s)
- Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Xiaowei Yu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Shihuan Cheng
- Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Jili Jing
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Cong Hu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China.,Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
24
|
Wu Y, Mi Y, Zhang F, Cheng Y, Wu X. Suppression of bromodomain-containing protein 4 protects trophoblast cells from oxidative stress injury by enhancing Nrf2 activation. Hum Exp Toxicol 2020; 40:742-753. [PMID: 33094643 DOI: 10.1177/0960327120968857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is considered a key hallmark of preeclampsia, which causes the dysregulation of trophoblast cells, and it contributes to the pathogenesis of preeclampsia. Emerging evidence has suggested bromodomain-containing protein 4 (BRD4) as a key regulator of oxidative stress in multiple cell types. However, whether BRD4 participates in regulating oxidative stress in trophoblast cells remains undetermined. The current study was designed to explore the potential function of BRD4 in the regulation of oxidative stress in trophoblast cells. Our data revealed that BRD4 expression was elevated in trophoblast cells stimulated with hydrogen peroxide. Exposure to hydrogen peroxide caused marked decreases in the levels of proliferation and invasion but promoted apoptosis and the production of ROS in trophoblast cells. Knockdown of BRD4, or treatment with a BRD4 inhibitor, markedly increased the levels of cell proliferation and invasion and decreased apoptosis and ROS production following the hydrogen peroxide challenge. Further data indicated that suppression of BRD4 markedly decreased the expression levels of Keap1, but increased the nuclear expression of Nrf2 and enhanced Nrf2-mediated transcriptional activity. BRD4 inhibition-mediated protective effects were markedly reversed by Keap1 overexpression or Nrf2 inhibition. Overall, these results demonstrated that BRD4 inhibition attenuated hydrogen peroxide-induced oxidative stress injury in trophoblast cells by enhancing Nrf2 activation via the downregulation of Keap1. Our study highlights the potential importance of the BRD4/Keap1/Nrf2 axis in the modulation of the oxidative stress response in trophoblast cells. Targeted inhibition of BRD4 may offer new opportunities for the development of innovative therapeutic approaches to treat preeclampsia.
Collapse
Affiliation(s)
- Yiqing Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yimin Cheng
- The Hospital of Xi'an Shiyou University, Xi'an, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Ye Y, Li M, Chen L, Li S, Quan Z. Circ-AK2 is associated with preeclampsia and regulates biological behaviors of trophoblast cells through miR-454-3p/THBS2. Placenta 2020; 103:156-163. [PMID: 33129036 DOI: 10.1016/j.placenta.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Circ-AK2 has been found to be differentially expressed in PE placenta tissues, however, the role and the underlying molecular mechanisms of circ-AK2 in PE remain poorly known. METHODS The expression of circ-AK2, miR-454-3p, and THBS2 mRNA was detected using quantitative real-time polymerase chain reaction. Protein levels of CyclinD1, MMP-9 and THBS2 were measured using Western blot. Cell proliferation, migration, and invasion were analyzed by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay and transwell assay. The interaction between miR-454-3p and circ-AK2 or THBS2 was analyzed by the dual-luciferase reporter assay. RESULTS Circ-AK2 was highly expressed in placental tissues of PE, and overexpression of circ-AK2 inhibited trophoblast cell proliferation, migration and invasion. Circ-AK2 directly bound to miR-454-3p, and miR-454-3p overexpression reversed the inhibitory action of circ-AK2 in biological functions of trophoblast cells. MiR-454-3p was lowly expressed in placental tissues of PE, and directly regulated THBS2 expression in a targeted manner. Silencing miR-454-3p suppressed the proliferating, migratory, and invasive abilities of trophoblast cells, while this condition was abolished by THBS2 knockdown. Besides, we also proved circ-AK2 could regulate THBS2 expression via miR-454-3p. DISCUSSION Circ-AK2 inhibited the proliferation, migration and invasion of trophoblast cells via targeting miR-454-3p/THBS2 axis, suggesting a novel insight into the etiology of PE and a potential therapeutic target for PE treatment.
Collapse
Affiliation(s)
- Yingqin Ye
- Reproductive Medicine Center, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Mei Li
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Lu Chen
- School of Clinical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxian Li
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhengzhao Quan
- Maternity Department, Jingmen No.1 People's Hospital, Jingmen, Hubei, China.
| |
Collapse
|
26
|
The Role of LIN28- let-7-ARID3B Pathway in Placental Development. Int J Mol Sci 2020; 21:ijms21103637. [PMID: 32455665 PMCID: PMC7279312 DOI: 10.3390/ijms21103637] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Placental disorders are a major cause of pregnancy loss in humans, and 40–60% of embryos are lost between fertilization and birth. Successful embryo implantation and placental development requires rapid proliferation, invasion, and migration of trophoblast cells. In recent years, microRNAs (miRNAs) have emerged as key regulators of molecular pathways involved in trophoblast function. A miRNA binds its target mRNA in the 3ʹ-untranslated region (3ʹ-UTR), causing its degradation or translational repression. Lethal-7 (let-7) miRNAs induce cell differentiation and reduce cell proliferation by targeting proliferation-associated genes. The oncoprotein LIN28 represses the biogenesis of mature let-7 miRNAs. Proliferating cells have high LIN28 and low let-7 miRNAs, whereas differentiating cells have low LIN28 and high let-7 miRNAs. In placenta, low LIN28 and high let-7 miRNAs can lead to reduced proliferation of trophoblast cells, resulting in abnormal placental development. In trophoblast cells, let-7 miRNAs reduce the expression of proliferation factors either directly by binding their mRNA in 3ʹ-UTR or indirectly by targeting the AT-rich interaction domain (ARID)3B complex, a transcription-activating complex comprised of ARID3A, ARID3B, and histone demethylase 4C (KDM4C). In this review, we discuss regulation of trophoblast function by miRNAs, focusing on the role of LIN28-let-7-ARID3B pathway in placental development.
Collapse
|
27
|
Li Q, Xu J. [miR-34a-5p regulates viability, invasion and apoptosis of placental trophoblastic cells via modulating CDK6 and PI3K/AKT pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:79-86. [PMID: 32376568 DOI: 10.12122/j.issn.1673-4254.2020.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the roles of microRNA (miR)-34a-5p and cyclin-dependent kinase (CDK) 6 in the regulation of cell viability, apoptosis and invasion of human placental trophoblastic cells and the relationship between miR-34a-5p and CDK6. METHODS We examined the expression of miR-34a-5p using RT-qPCR in cultured human trophoblast HTR-8/Svneo cells and human choriocarcinoma cell lines BeWo and JEG-3HTR-8/Svneo. HTR-8/Svneo cells transfected with a miR-34a-5p-mimic, the miR-34a-5p-inhibitor, or pcDNA-CDK6 along with the mimic group were analyzed for changes in cell proliferation using MTT assay; the apoptosis of the cells were assessed by detecting caspase 3 activity and cleaved caspase 3 protein expression, and the cell invasion was evaluated using Transwell assay. Western blotting was used to determine the protein levels of CDK6, cleaved caspase 3, and MMP-9 in the cells. The interaction between CDK6 and miR-34a-5p analyzed using a luciferase reporter assay. RESULTS Transfection with the miR-34a-5p mimic significantly reduced the viability (P=0.000), suppressed the invasion (P=0.049), enhanced the cell apoptosis (P=0.018), down-regulated the expressions of MMP-9 (P=0.004) and CDK6 (P=0.014), and up-regulated caspase 3 activity (P=0.018) and cleaved caspase 3 expression (P=0.003) in cultured HTR-8/Svneo cells. CDK6 was confirmed as one of the target gene of miR-34a-5p. Transfection with pcDNA-CDK6 significantly reversed the effects of miR- 34a-5p overexpression on the cell viability (P=0.000), apoptosis (P=0.015), and invasion (P=0.046). Treatment of the cells with insulin-like growth factor 1 (IGF-1), an activator of the PI3K/AKT pathway, also significantly attenuated the effects of miR-34a- 5p overexpression on the cell viability (P=0.011), apoptosis (P=0.004), and invasion (P=0.002). CONCLUSIONS miR-34a-5p promotes apoptosis and inhibits the viability and invasion of human placental trophoblastic cells by down-regulating CDK6 and inactivating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics, Jiangxi Maternal and Children's Health Hospital, Nanchang 330006, China
| | - Juanxiu Xu
- Department of Oncology, Jiangxi Maternal and Children's Health Hospital, Nanchang 330006, China
| |
Collapse
|
28
|
Han X, Niu C, Zuo Z, Wang Y, Yao L, Sun L. MiR-342-3p inhibition promotes cell proliferation and invasion by directly targeting ID4 in pre-eclampsia. J Obstet Gynaecol Res 2019; 46:49-57. [PMID: 31749272 DOI: 10.1111/jog.14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
AIM This study aimed to explore the miR-342-3p expression in pre-eclampsia (PE) placentas and confirm whether miR-342-3p exerts effects on proliferation and migration of HTR-8/SVneo trophoblastic cells. METHODS The PE placentas (n = 8) were taken from gravidas complicated by PE and delivered after 34 weeks. The chorionic plates and the basal plates were separately taken from the placenta disc near the position of umbilical cord insertion. RT-qPCR was used to measure the expression of miR-342-3p in the chorionic plates and the basal plates. Cell invasion assay and MMT assay were used to assess the effects of miR-342-3p on proliferation and migration of HTR-8/SVneo trophoblastic cells. Luciferase reporter assay and Western blotting were used to analyze the target of miR-342-3p and investigate the detailed mechanisms. RESULTS The expression of miR-342-3p was upregulated in both basal plates and chorionic plates in patients with PE compared with healthy pregnant individuals. MiR-342-3p inhibitor suppressed the cell viability and invasion, and induced apoptosis in trophoblast cells. Furthermore, inhibitor of DNA binding (ID)-4 (ID4) was a direct target of miR-342-3p, and knockdown of ID4 abrogated the regulation effect of miR-342-3p on cell viability, apoptosis and invasion. CONCLUSION Inhibition of miR-342-3p expression may suppress the occurrence of PE by targeting ID4 in vitro.
Collapse
Affiliation(s)
- Xiuhua Han
- Department of Infectious disease, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Chuanzhen Niu
- Department of Critical Care Medicine, Yantai Infectious Diseases Hospital, Yantai, China
| | - Zhongli Zuo
- Department of Gynecology and Obstetrics, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Yuanmin Wang
- Department of Infectious disease, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Lanlan Yao
- Department of Infectious disease, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Lili Sun
- Department of Infectious disease, Yantai Municipal Laiyang Central Hospital, Yantai, China
| |
Collapse
|
29
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|