1
|
Oraby MA, Abdel Mageed SS, Amr Raouf A, Abdelshafy DA, Ahmed EF, Khalil RT, Mangoura SA, Fadaly DS. Remdesivir ameliorates ulcerative colitis-propelled cell inflammation and pyroptosis in acetic acid rats by restoring SIRT6/FoxC1 pathway. Int Immunopharmacol 2024; 137:112465. [PMID: 38878489 DOI: 10.1016/j.intimp.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a primary culprit of inflammatory bowel disease that entails prompt and effective clinical intervention. Remdesivir (RDV), a broad-spectrum antiviral nucleotide, has been found to exert anti-inflammatory effects in experimental animals. AIM This study investigates the prospective anti-inflammatory merit of RDV on an experimental model of UC. The role of SIRT6/FoxC1 in regulating colonic cell inflammation and pyroptosis is delineated. METHOD Rats were challenged with a single intrarectal dose of acetic acid (AA) solution (2 ml; 4 % v/v) to induce colitis. RDV (20 mg/kg, ip) and sulfasalazine (100 mg/kg, po) were administered to rats 14 days before the injection of AA. RESULTS Administration of RDV ameliorated colonic cell injury and loss as manifested by improvement of severe colon histopathological mutilation and macroscopic damage and disease activity index scores together with restoration of normal colon weight/length ratio. In addition, RDV alleviated colonic inflammatory reactions, thereby curtailing NF-κB activation and the inflammatory cytokines, TNF-α, IL-18, and IL-1β. Mitigation of colonic oxidative stress and apoptotic reactions were also evident in the setting of RDV treatment. Mechanistically, RDV enhanced the anti-inflammatory cascade, SIRT6/FoxC1, together with curbing the pyroptotic signal, NLRP3/cleaved caspase-1/Gasdermin D-elicited colonic inflammatory cell death. CONCLUSION This study reveals, for the first time, the anti-inflammatory effect of RDV against experimental UC. Augmenting SIRT6/FoxC1-mediated repression of colonic inflammation and pyroptosis might advocate the colo-protective potential of RDV.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Dareen A Abdelshafy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman F Ahmed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rowida T Khalil
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Safwat A Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
2
|
Liu X, Lv Z, Xie Z, Wang Q, Yao W, Yu J, Jing Q, Meng X, Ma B, Xue D, Hao C. Association between the use of lipid-lowering drugs and the risk of inflammatory bowel disease. Eur J Clin Invest 2023; 53:e14067. [PMID: 37515404 DOI: 10.1111/eci.14067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Observational studies have suggested an association between lipid-lowering drugs and inflammatory bowel disease (IBD) risk. This study aimed to assess the causal influence of lipid-lowering agents on IBD risk using Mendelian randomization analysis. METHOD In a population of 173,082 individuals of European ancestry, 55 single-nucleotide polymorphisms were identified as instrumental variables for 6 lipid-lowering drug targets (HMGCR, NPC1LC, PCSK9, LDLR, CETP and APOB). Summary statistics for the genome-wide association study of IBD, ulcerative colitis (UC) and Crohn's disease (CD) were obtained from the FinnGen consortium, Program in Complex Trait Genomics and UK Biobank. Inverse-variance weighted was employed as the primary MR method, and odds ratios (ORs) with 95% confidence intervals were reported as the results. Sensitivity analyses using conventional MR methods were conducted to assess result robustness. RESULTS Gene-proxied inhibition of Niemann-Pick C1-like 1 (NPC1L1) was associated with an increased IBD risk (OR [95% CI]: 2.31 [1.38, 3.85]; p = .001), particularly in UC (OR [95% CI]: 2.40 [1.21, 4.74], p = .012), but not in CD. This finding was replicated in the validation cohort. Additionally, gene-proxied inhibition of low-density lipoprotein receptor was associated with reduced IBD (OR [95% CI]: .72 [.60, .87], p < .001) and UC risk (OR [95% CI]: .74 [.59, .92], p = .006), although this result was not replicated in the validation cohort. Other drug targets did not show significant associations with IBD, UC or CD risk. CONCLUSION Inhibition of the lipid-lowering drug-target NPC1L1 leads to an increased IBD risk, mainly in the UC population.
Collapse
Affiliation(s)
- Xuxu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenyi Lv
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihong Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Yao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxu Jing
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianzhi Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Biao Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenjun Hao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Rostamabadi F, Bagheri F, Khaksari M, Azimi M. Ameliorating effects of Acacia arabica and Ocimum basilicum on acetic acid-induced ulcerative colitis model through mitigation of inflammation and oxidative stress. Heliyon 2023; 9:e22355. [PMID: 38058645 PMCID: PMC10696014 DOI: 10.1016/j.heliyon.2023.e22355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum. The disease is characterized by oxidative stress and severe inflammation. Research has shown the anti-oxidative and anti-inflammatory effects induced by consuming the Acacia arabia and Ocimum basilicum. The present study aimed to evaluate the effect of treatment with O. basilicum together with A. arabica on healing, inflammation, and oxidative stress in the course of experimental colitis in rats. Methods A total number of 50 male rats were selected and randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with a 4 % acetic acid solution. Four days after the colitis induction, the rats were orally treated for the next 4 days with saline or a combination of A. arabica and O. basilicum (1000 mg/kg) or sulfasalazine (100 mg/kg). Results Acetic acid-induced colitis increased the colon's macroscopic and histopathological damage scores; increased colon levels of MDA (Malondialdehyde), MPO (Myeloperoxidase), TNF-α (Tissue necrosis factor α), IL6 (Interleukin 6), and IL17 (Interleukin 17); and decreased SOD (Superoxide Dismutase), GPx (Glutathione Peroxidase), and IL10 (Interleukin 10) levels in the treated rats compared with the control group (P < 0.001). Overall, a combination of A. arabica and O. basilicum reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, and MDA, MPO, TNF-α, IL6 (P < 0.001), and IL17 (P < 0.01) levels of the colon. Furthermore, it increased SOD, GPx, and IL10 levels compared to the colitis group (P < 0.01). Conclusion A. arabica and O. basilicum have improving effects on UC by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Quality by design-oriented formulation optimization and characterization of guar gum-pectin based oral colon targeted liquisolid formulation of xanthohumol. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Cellat M, Tekeli İO, Türk E, Aydin T, Uyar A, İşler CT, Gökçek İ, Etyemez M, Güvenç M. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats. Biotech Histochem 2023; 98:255-266. [PMID: 37165766 DOI: 10.1080/10520295.2023.2176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Increased pro-inflammatory cytokines and oxidative stress contribute to the pathophysiology of ulcerative colitis (UC). Inula viscosa is a plant with antioxidant and anti-inflammatory properties. We investigated the effect of an ethanolic extract of I. viscosa on an experimental UC model created using acetic acid. Rats were divided into four groups of eight: group 1, control; group 2, 3% acetic acid group; group 3, 100 mg/kg sulfasalazine + 3% acetic acid group; group 4, 400 mg/kg I. viscosa + 3% acetic acid. I. viscosa and sulfasalazine were administered by oral gavage and 3% acetic acid was administered per rectum. We found that I. viscosa treatment decreased colon malondialdehyde, tumor necrosis factor-α, interleukin-1 beta and nuclear factor kappa B levels; it increased reduced glutathione, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and kelch-like ECH-associated protein 1 levels and glutathione peroxidase enzyme activity. Group 1 colon exhibited normal histological structure. Slight inflammatory cell infiltration and edema and insignificant slight erosion in crypts were detected in colon tissues of group 4. We found that I. viscosa reduced oxidative stress and inflammation, which was protective against UC by inducing the Nrf-2/Keap-1/HO-1 pathway in the colon.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
6
|
Vital KD, Cardoso BG, Lima IP, Campos AB, Teixeira BF, Pires LO, Dias BC, de Alcantara Candido P, Cardoso VN, Fernandes SOA. Therapeutic effects and the impact of statins in the prevention of ulcerative colitis in preclinical models: A systematic review. Fundam Clin Pharmacol 2022; 37:493-507. [PMID: 36514874 DOI: 10.1111/fcp.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Gatti Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iasmin Pinheiro Lima
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Beatriz Campos
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Faria Teixeira
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octávio Pires
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Coutinho Dias
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia de Alcantara Candido
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos. Departamento de Ciências Farmacêuticas e Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
8
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Khaksari hadad M, Lashkarizadeh M, Shahrokhi N, Zahedi MJ, Azimi M. The effect of combining basil seeds and gum Arabic on the healing process of experimental acetic acid-induced ulcerative colitis in rats. J Tradit Complement Med 2022; 12:599-607. [PMID: 36325241 PMCID: PMC9618398 DOI: 10.1016/j.jtcme.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023] Open
Abstract
Background & aim Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum that oxidative stress and severe inflammation are the main features of this disease. Previous studies have shown that separate consumption of basil and gum arabic can reduce inflammation and oxidative stress. The aim of the study was evaluating the effect of treatment with basil seeds given together with gum arabic on healing, inflammation and oxidative stress in the course of experimental colitis in rats. Experimental procedure A total number of 50 male rats were used, randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with 4% solution od acetic acid. Four days after induction of colitis, rats were treated for next 4 days with saline or combination of basil seeds plus gum arabic (1 mg/kg) or sulfasalazine (100 mg/g) rectally. The experiment was terminated after last dose of treatment. Rats without induction of colitis were used as a sham group. Results Acetic acid-induced colitis increased the macroscopic and histopathological damage scores of the colon as well as colon levels of MDA(Malondialdehyde), MPO(Myeloperoxidase), TNFα(Tissue necrosis factor α), IL6 (Interleukin 6)and IL17(Interleukin 17) and decreased SOD(Superoxide Dismutase), GPx (Glutathione Peroxidase) and IL10 (Interleukin 10) levels compared with the control group(P < 0.001). Treatment with basil and gum arabic reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, MDA, MPO, TNFα, IL6(P < 0.001) and IL17 (P < 0.01) levels of the colon and increased SOD, GPx and IL10 levels compared to the colitis group (P < 0.01). Conclusion Rectal administration of combination of basil seeds plus gum arabic after induction of colitis, exhibits antioxidant and anti-inflammatory effects, and accelerates the healing of the colon in experimental colitis evoked by acetic acid.
Collapse
|
9
|
Fardafshari F, Taymouri S, Minaiyan M, Tavakoli N. Preparing simvastatin nanoparticles by a combination of pH-sensitive and timed-release approaches for the potential treatment of ulcerative colitis. J Biomater Appl 2022; 37:859-871. [PMID: 35999010 DOI: 10.1177/08853282221122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, an emulsion solvent evaporation method was used to produce Eudragit RL (ERL) nanoparticles (NPs) loaded with simvastatin (SIM) for the treatment of ulcerative colitis (UC). Accordingly, the effects of different formulation variables on the properties of NPs were evaluated using the Box-Behnken design. The optimized NPs were then coated by Eudragit FS30D (EFS30D). Drug release was studied in different physiological environments. Colitis was induced by 3% of acetic acid in rats, which received NPs of SIM (10 mg/kg/day), mesalazine (150 mg/kg/day), blank NPs and normal saline orally for 5 days. Macroscopic histopathological evaluation and biochemical analysis, including myeloperoxidase (MPO) activity and malondialdehyde (MDA) level in the colon tissues, were carried out in this study. The optimized SIM-ERL NPs showed the particle size of 182.48 ± 4.57 nm, the polydispersity index of 0.29 ± 0.12, the zeta potential of 26.45 ± 4.57 mV, drug loading % of 34.64 ± 0.48, the encapsulation efficiency % of 98.68 ± 0.69, and the release efficiency % of 35.78 ± 1.37. Coating the optimized NPs with EFS30D caused an increase in particle size and a decrease in the zeta potential of NPs. The optimized SIM-EFS30D/RL NPs improved the macroscopic and histopathological scores. Also, MPO activity and MDA level were reduced significantly by NPs, as compared to the control group. Therefore, this drug delivery system can be an alternative to the previous treatments of UC.
Collapse
Affiliation(s)
- Fereshteh Fardafshari
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of pharmacology, School of Pharmacy, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Savran M, Ascı H, Erzurumlu Y, Ozmen O, Ilhan I, Sırın MC, Karakuyu NF, Karaibrahimoglu A. "Theranekron: A Novel Anti-inflammatory Candidate for Acetic Acid-Induced Colonic Inflammation in Rats". Mol Biol Rep 2022; 49:8753-8760. [PMID: 35939182 DOI: 10.1007/s11033-022-07722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized with chronic inflammation of gastrointestinal track. In the pathogenesis of IBD, inflammation is the main mechanism. Induction of inflammation triggers the oxidative stress that subsequently leading to apoptosis. Considering the all pathological mechanisms, many therapeutic agents have been used for IBD but because of serious side effects there is still a need for new therapeutic drugs. In this study, we aim to evaluate the possible protective effects of Theranekron (TH) on acetic acid (AA)- induced colonic damage and to describe the probable effect mechanisms of TH. MATERIALS AND RESULTS Fourty female adult Wistar albino rats were divided into 5 groups. Following 24 h fasting, colitis was induced by rectal instillation of AA. In TH group, a single dose of subcutaneous 0.2 ml TH was used. In treatment groups, 0.2 ml TH single dose or 100 mg/kg sulfasalazine (SS) for 7 days were used after colitis induction. Normal salin was used for all applications in control group. Histopathologically hemorrhage, edema and inflammatory reactions were seen in AA group. TH and SS decreased the severity of lesions. Nuclear factor kappa B, Serum amyloid A, C-reactive protein, Growth-related oncogene, and Osteopontin expressions were markedly increased in AA group and TH markedly reduced these expressions. In Western analysis, decreased NF-kB and caspase-3 levels were observed with TH. Oxidative markers did not changed significantly. CONCLUSIONS TH has a prominent anti-inflammatory effect on AA-induced colonic inflammation via NF-kB signaling whereas antiapoptic effects seem to be independent from this pathway.
Collapse
Affiliation(s)
- Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Ascı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ilter Ilhan
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - M Cem Sırın
- Department of Medical Microbiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Adnan Karaibrahimoglu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
11
|
Zhou BC, Tian YG, Sun YN, Liu YL, Zhao D. A validated LC-MS/MS method for the determination of hederasaponin C: Application to Pharmacokinetic-pharmacodynamic studies in the therapeutic area of acetic acid-induced ulcerative colitis in rats. Biomed Chromatogr 2022; 36:e5450. [PMID: 35831969 DOI: 10.1002/bmc.5450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Hederasaponin C (HSC), one of the main components of pulsatilla chinensis, is considered as a potential drug for the treatment of inflammatory bowel disease. In the present research, we developed a PK-PD model to describe the concentration-effect course of drug action following intraperitoneal injection of HSC in colitis rats. A sensitive UPLC-MS/MS method was firstly established for the the determination of HSC in rat plasma to explore the pharmacokinetics properties. The separation was performed on an Accucore C18 column (2.1mm×100mm, 2.6μm) with the flow phase consisted of acetonitrile and 0.1% formic acid water. The assay method was validated and demonstrated good adaptability for application in the pharmacokinetic study. Then the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in colon tissues were measured by ELISA assay. The levels of TNF-α, IL-1β and IL-6 was decreased after HSC administration, suggesting that HSC can significantly improve the level of inflammatory syndrome factor. The pharmacokinetics study showed that the Tmax of HSC was 1 h. The concentration-effect curves showed hysteresis loop. And there has a hysteresis between the peaked concentration and the maximum effect of HSC. The present study established in vivo PK/PD models and the result showed a great potential of HSC for treating ulcerative colitis.
Collapse
Affiliation(s)
- Bo Cheng Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Na Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Li Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Xu Z, Zhang X, Wang W, Zhang D, Ma Y, Zhang D, Chen M. Fructus Mume (Wu Mei) Attenuates Acetic Acid-Induced Ulcerative Colitis by Regulating Inflammatory Cytokine, Reactive Oxygen Species, and Neuropeptide Levels in Model Rats. J Med Food 2022; 25:389-401. [PMID: 35438553 DOI: 10.1089/jmf.2021.k.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.
Collapse
Affiliation(s)
- Zongying Xu
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenya Wang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dongmei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Linagliptin ameliorates acetic acid-induced colitis via modulating AMPK/SIRT1/PGC-1α and JAK2/STAT3 signaling pathway in rats. Toxicol Appl Pharmacol 2022; 438:115906. [PMID: 35122774 DOI: 10.1016/j.taap.2022.115906] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disease, profoundly affecting the patient's quality of life and is associated with various complications. Linagliptin, a potent DPP- IV inhibitor, shows favorable anti-inflammatory effects in several animal model pathologies. To this end, the present study aimed to investigate the anti-inflammatory effect of linagliptin in a rat model of acetic acid-induced colitis. Moreover, the molecular mechanisms behind this effect were addressed. Accordingly, colitis was established by the administration of a 2 ml 6% acetic acid intrarectally and treatment with linagliptin (5 mg/kg) started 24 h after colitis induction and continued for 7 days. On one hand, the DPP-IV inhibitor alleviated the severity of colitis as evidenced by a decrease of disease activity index (DAI) scores, colon weight/length ratio, macroscopic damage, and histopathological deteriorations. Additionally, linagliptin diminished colon inflammation via attenuation of TNF-α, IL-6, and NF-κB p65 besides restoration of anti-inflammatory cytokine IL-10. On the other hand, linagliptin increased levels of p-AMPK, SIRT1, and PGC-1α while abolishing the increment in p-JAK2 and p-STAT3. In parallel linagliptin reduced mTOR levels and upregulated expression levels of SHP and MKP-1 which is postulated to mediate AMPK-driven JAK2/STAT3 inhibition. Based on these findings, linagliptin showed promising anti-inflammatory activity against acetic acid-induced colitis that is mainly attributed to the activation of the AMPK-SIRT1-PGC-1α pathway as well as suppression of the JAK2/STAT3 signaling pathway that might be partly mediated through AMPK activation.
Collapse
|
14
|
Elgalil Mohamed Ahmed A, Attia MA, Abd-Elaziz MEE, Abd Ellatif R. Histological study of the effect of quercetin on experimentally induced ulcerative colitis in adult male albino rats. TANTA MEDICAL JOURNAL 2022; 50:285. [DOI: 10.4103/tmj.tmj_101_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Protective effect of mirtazapine against acetic acid-induced ulcerative colitis in rats: Role of NLRP3 inflammasome pathway. Int Immunopharmacol 2021; 101:108174. [PMID: 34601335 DOI: 10.1016/j.intimp.2021.108174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023]
Abstract
AIMS Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes long-lasting inflammation on the innermost lining of the colon and rectum. Mirtazapine (MRT) is a well-known antidepressant that was proven to have anti-inflammatory activity; however, to date, its role has not been investigated in UC. The current study aimed to investigate the role and mechanism of MRT in UC. MAIN METHOD Acetic acid (AA) was used for UC induction, and sulfasalazine (SLZ) was used as a positive control. Rats were divided into five equal groups; as follows; normal control, AA, SLZ (received SLZ in a dose of 250 mg/kg for 14 days), MRT10 (received MRT in a dose of 10 mg/kg/day for 14 days), and MRT30 (received MRT in a dose of 30 mg/kg/day for 14 days) groups. Macroscopic and microscopic examinations together with oxidative stress parameters evaluation were done. NOD-like receptors-3 (NLRP3), caspase-1, TNF-α, and nuclear factor kappa B (NF-κB) expression together with interleukin (IL)-1β and IL-18 levels were examined. KEY FINDING MRT, in a dose-dependent manner, prevented the macroscopic and microscopic colonic damage and corrected the oxidative stress induced by AA. Moreover, MRT decreased the colonic tissue NLRP3 inflammasome, caspase-1, NF-κB, TNF-α expressions, IL-1β, and IL-18 levels that were elevated in colonic tissue by the AA. SIGNIFICANCE MRT has a dose-dependent protective effect against UC that was mediated mainly by its anti-inflammatory activity with modulation of NLRP3/caspase-1 inflammatory pathway.
Collapse
|
16
|
Identification of the Molecular Basis of Nanocurcumin-Induced Telocyte Preservation within the Colon of Ulcerative Colitis Rat Model. Mediators Inflamm 2021; 2021:7534601. [PMID: 34373677 PMCID: PMC8349286 DOI: 10.1155/2021/7534601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Telocytes (TCs) are a distinct type of interstitial cells that play a vital role in the pathogenesis of ulcerative colitis and colonic tissue hemostasis. The aim of this study was to examine the effect of nanocurcumin (NC) on the morphometric and immunohistochemical characterization of TCs in the ulcerative colitis (UC) rat model. Methods Forty rats were randomly divided into control, NC, UC, and UC+NC groups. At the end of the experiment, the colon was dissected and prepared for histopathological and immunohistochemical assessment. Tissue homogenates were prepared for real-time PCR assessment of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β) gene expression. Our results revealed extensive mucosal damage with inflammatory cell infiltration, significant reduction of CD34, and vimentin immunostained TCs in the colon of the UC group with significant elevation of expression of IL-6, TNF-α, and TGF-β. The UC+NC-treated group revealed significant elevation of TC count compared to the UC group besides, a significant reduction of the three gene expression. Conclusion NC successfully targeted the colonic tissue, improved the mucosal lesion, preserve TCs distribution, and count through its anti-inflammatory and fibrinolytic properties.
Collapse
|
17
|
Helal MG, Abd Elhameed AG. Graviola mitigates acetic acid-induced ulcerative colitis in rats: insight on apoptosis and Wnt/Hh signaling crosstalk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29615-29628. [PMID: 33559079 DOI: 10.1007/s11356-021-12716-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
In this study, we elucidated the potential protective effects of graviola leaves, compared with sulfasalazine, against acetic acid (AA)-induced ulcerative colitis (UC) in rats. Twenty-eight mature male rats were divided into four groups, Sham, Colitis, Colitis/Sulfa, and Colitis/Graviola, and were treated orally with either saline, saline, sulfasalazine (100 mg/kg/day), or graviola (100 mg/kg/day), respectively, for 7 days. On the 4th day, UC was induced by transrectal administration of 4% AA. Colon tissues were excised for macroscopic and histopathological evaluation and immunohistochemical analysis of caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax). Also, levels of oxidative mediators, Wnt family member1 (Wnt1), smoothened (Smo), and glioblastoma-1 (Gli1) were evaluated. Macroscopic and histopathological examination revealed that both graviola and sulfasalazine significantly mitigated colonic damage. Besides, both treatments significantly alleviated AA-induced oxidative stress, as evidenced by reduced nitric oxide (No) and malondialdehyde (MDA) levels and myeloperoxidase (MPO) activity and raised reduced glutathione (GSH) content. Both treatments significantly attenuated AA-induced apoptosis via downregulating the expression of Bax and caspase-3 and upregulating the expression of the anti-apoptotic protein, Bcl-2. Furthermore, downregulation of mRNA expression of Wnt1 with concomitant upregulation of Smo and Gli1 was observed in rats treated with either sulfasalazine or graviola. Based on these observations, graviola may attenuate AA-induced UC, at least partially, by modulating apoptosis and Wingless/Int1 (Wnt) and hedgehog (Hh) signaling crosstalk.
Collapse
Affiliation(s)
- Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed G Abd Elhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
18
|
Menze ET, Ezzat H, Shawky S, Sami M, Selim EH, Ahmed S, Maged N, Nadeem N, Eldash S, Michel HE. Simvastatin mitigates depressive-like behavior in ovariectomized rats: Possible role of NLRP3 inflammasome and estrogen receptors' modulation. Int Immunopharmacol 2021; 95:107582. [PMID: 33774267 DOI: 10.1016/j.intimp.2021.107582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
It is well known that females are more vulnerable than males to stress-related psychiatric disorders, particularly during perimenopausal and postmenopausal periods. Hormone replacement therapy (HRT) has been widely used for the management of postmenopausal depression. However, HRT could be associated with severe adverse effects, including increased risk for coronary heart disease, breast cancer and endometrial cancer. Thus, there is a pressing demand for novel therapeutic options for postmenopausal depression without sacrificing uterine health. Simvastatin (SIM) was proven to have neuroprotective activities besides its hypocholesterolemic effect, the former can be attributed to its, antioxidant, anti-apoptotic and anti-inflammatory activities. Moreover, many reports highlighted that SIM has estrogenic activity and was able to induce the expression of estrogen receptors in rats. The present study showed that SIM (20 mg/kg, p.o.) markedly attenuated depressive-like behavior in ovariectomized (OVX) rats. Moreover, SIM prohibited hippocampal microglial activation, abrogated P2X7 receptor, TLR2 and TLR4 expression, inhibited NLRP3 inflammasome activation, with subsequent reduction in the levels of pro-inflammatory mediators; IL-1β and IL-18. Furthermore, a marked elevation in hippocampal expression of ERα and ERβ was noted in SIM-treated animals, without any significant effect on uterine relative weight or ERα expression. Taken together, SIM could provide a safer alternative for HRT for the management of postmenopausal depression, without any hyperplastic effect on the uterus.
Collapse
Affiliation(s)
- Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hager Ezzat
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Salma Shawky
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa Sami
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman H Selim
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Ahmed
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Maged
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nancy Nadeem
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C, Massie A. Chronic Sulfasalazine Treatment in Mice Induces System x c - - Independent Adverse Effects. Front Pharmacol 2021; 12:625699. [PMID: 34084129 PMCID: PMC8167035 DOI: 10.3389/fphar.2021.625699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite ample evidence for the therapeutic potential of inhibition of the cystine/glutamate antiporter system xc− in neurological disorders and in cancer, none of the proposed inhibitors is selective. In this context, a lot of research has been performed using the EMA- and FDA-approved drug sulfasalazine (SAS). Even though this molecule is already on the market for decades as an anti-inflammatory drug, serious side effects due to its use have been reported. Whereas for the treatment of the main indications, SAS needs to be cleaved in the intestine into the anti-inflammatory compound mesalazine, it needs to reach the systemic circulation in its intact form to allow inhibition of system xc−. The higher plasma levels of intact SAS (or its metabolites) might induce adverse effects, independent of its action on system xc−. Some of these effects have however been attributed to system xc− inhibition, calling into question the safety of targeting system xc−. In this study we chronically treated system xc− - deficient mice and their wildtype littermates with two different doses of SAS (160 mg/kg twice daily or 320 mg/kg once daily, i.p.) and studied some of the adverse effects that were previously reported. SAS had a negative impact on the survival rate, the body weight, the thermoregulation and/or stress reaction of mice of both genotypes, and thus independent of its inhibitory action on system xc−. While SAS decreased the total distance travelled in the open-field test the first time the mice encountered the test, it did not influence this parameter on the long-term and it did not induce other behavioral changes such as anxiety- or depressive-like behavior. Finally, no major histological abnormalities were observed in the spinal cord. To conclude, we were unable to identify any undesirable system xc−-dependent effect of chronic administration of SAS.
Collapse
Affiliation(s)
- Lise Verbruggen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsay Sprimont
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Eduard Bentea
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Azzedine Gharib
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Charles Nicaise
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
20
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
21
|
Ali FEM, M Elfiky M, Fadda WA, Ali HS, Mahmoud AR, Mohammedsaleh ZM, Abd-Elhamid TH. Regulation of IL-6/STAT-3/Wnt axis by nifuroxazide dampens colon ulcer in acetic acid-induced ulcerative colitis model: Novel mechanistic insight. Life Sci 2021; 276:119433. [PMID: 33794250 DOI: 10.1016/j.lfs.2021.119433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
AIM Ulcerative colitis (UC) is a common intestinal problem characterized by the diffusion of colon inflammation and immunity dysregulation. Nifuroxazide, a potent STAT-3 inhibitor, exhibits diverse pharmacological properties. The present study aimed to elucidate a novel anti-colitis mechanism of nifuroxazide against the acetic acid-induced UC model. METHODS Rats were grouped into control (received vehicle), UC (2 ml of 5% acetic acid by intrarectal infusion), UC plus sulfasalazine (100 mg/kg/day, P.O.), UC plus nifuroxazide (25 mg/kg/day, P.O.), and UC plus nifuroxazide (50 mg/kg/day, P.O.) and lasted for 6 days. RESULTS The present study revealed that nifuroxazide significantly reduced UC measures, hematological changes, and histological alteration. In addition, treatment with nifuroxazide significantly down-regulated serum CRP as well as the colonic expressions of MPO, IL-6, TNF-α, TLR-4, NF-κB-p65, JAK1, STAT-3, DKK1 in a dose-dependent manner. Besides, our results showed that the colonic Wnt expression was up-regulated with nifuroxazide treatment. In a dose-dependent manner, nifuroxazide markedly alleviated acetic acid-induced cellular infiltration and improved ulcer healing by increasing intestinal epithelial cell regeneration. SIGNIFICANCE Our results collectively indicate that nifuroxazide is an effective anti-colitis agent through regulation of colon inflammation and proliferation via modulation IL-6/STAT-3/Wnt signaling pathway.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mohamed M Elfiky
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt
| | - Walaa A Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
22
|
Fouad MR, Salama RM, Zaki HF, El-Sahar AE. Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol 2021; 92:107354. [PMID: 33434756 DOI: 10.1016/j.intimp.2020.107354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
Inflammatory processes, including ulcerative colitis (UC), are associated with the increase in synthesis and release of pro-inflammatory cytokines. The release of these cytokines is regulated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor-kappa B (NFκB) and cAMP response element-binding protein (CREB) signaling pathways as well as over expression of microRNA 146a (miR-146a) and long non-coding RNA interferon gamma antisense 1 (lncRNA IFNG-AS1). Vildagliptin (Vilda), a dipeptidyl peptidase IV (DPP-IV) inhibitor, has an anti-inflammatory, antioxidant and anti-apoptotic effects which were established in various models. However, its possible protective effect in UC has not been clarified. Hence, the current study aimed to explore the possible prophylactic effect of different doses of Vilda against acetic acid (AA)-induced colitis in rats. Forty-eight adult Wistar rats were divided into six groups: control, Vilda (10 mg/kg/day; p.o.), AA, AA + Vilda (5 mg/kg/day; p.o.), AA + Vilda (10 mg/kg/day; p.o.) and AA + sulfasalazine (Sulfa) (100 mg/kg/day; p.o.).Low- and high-dose Vilda showed significant improvement in the disease activity index (DAI) and macroscopic assessment markers. Vilda has markedly inhibited the expression of lncRNA IFNG-AS1 and miR-146a, as well as PI3K/Akt/NFκB pathway, while activated CREB and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, and this was reflected in alleviated oxidative stress, inflammation and apoptosis. Such outcomes were more prominent with the high-dose Vilda versus low-dose Vilda and Sulfa. Moreover, the histological examination showed almost intact histological features in Vilda-treated groups when compared to AA group treated with saline. In conclusion, Vilda can be regarded as a new promising therapeutic alternative against UC.
Collapse
Affiliation(s)
- Marina R Fouad
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
23
|
Yu H, Hu K, Zhang T, Ren H. Identification of Target Genes Related to Sulfasalazine in Triple-Negative Breast Cancer Through Network Pharmacology. Med Sci Monit 2020; 26:e926550. [PMID: 32925871 PMCID: PMC7513616 DOI: 10.12659/msm.926550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The anti-inflammatory drug sulfasalazine (SAS) has been confirmed to inhibit the growth of triple-negative breast cancer (TNBC), but the mechanism is not clear. The aim of this study was to use network pharmacology to find relevant pathways of SAS in TNBC patients. Material/Methods Through screening of the GeneCards, CTD, and ParmMapper databases, potential genes related to SAS and TNBC were identified. In addition, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed using the R programming language. Protein–protein interaction networks were constructed using Cytoscape. The Kaplan-Meier plotter screened genes related to TNBC prognosis. TNBC patient gene expression profiles and clinical data were downloaded from The Cancer Genome Atlas database. A heatmap was generated using the R programming language that presents the expression of potential target genes in patients with TNBC. Results Eighty potential target genes were identified through multiple databases. The bioinformatical analyses predicted the interrelationships, potential pathways, and molecular functions of the genes from multiple aspects, which are associated with physiological processes such as the inflammatory response, metabolism of reactive oxygen species (ROS), and regulation of proteins in the matrix metalloproteinase (MMP) family. Survival analysis showed that 12 genes were correlated with TNBC prognosis. Heatmapping showed that genes such as those encoding members of the MMP family were differentially expressed in TNBC tissues and normal tissues. Conclusions Our analysis revealed that the main reasons for the inhibitory effect of SAS on TNBC cells may be inhibition of the inflammatory response and MMP family members and activation of ROS.
Collapse
Affiliation(s)
- Haochen Yu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Ke Hu
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Tao Zhang
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Haoyu Ren
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Liu B, Piao X, Niu W, Zhang Q, Ma C, Wu T, Gu Q, Cui T, Li S. Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-κB Oxidative and Inflammatory Signaling and Gut Microbiota. Front Pharmacol 2020; 11:1036. [PMID: 32848725 PMCID: PMC7403404 DOI: 10.3389/fphar.2020.01036] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological Relevance In Traditional Chinese medicine (TCM) theory, ulcerative colitis (UC) is associated with damp-heat, blood stasis, and intestinal vascular ischemia. Kuijieyuan decoction (KD) is a traditional Chinese medicine based on the above theory and used clinically to alleviate UC injury. Methods The main components of KD were analyzed by using high-pressure liquid chromatography (HPLC) and confirmed by UPLC-MS/MS. A UC model was established in rats by using dextran sulfate sodium (DSS) and dead rats (caused by DSS) were excluded from the study. Forty-eight rats were divided into 6 groups, health control (CG), UC model (UG), sulfasalazine (SG), low-dose KD (LG), middle-dose KD (MG), and high-dose KD (HG) groups. UC damage was assessed by hematoxylin and eosin staining and scan electron microscopy. We measured Toll-like receptor 4 (TLR4), p-phosphatidylinositol 3-kinase (PI3K), PI3K, p-Protein kinase B (AKT), AKT, p-nuclear factor kappa B (NF-κB), NF-κB, oxidative stress marker (superoxidase dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), and malondialdehyde) and inflammatory markers (tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6 and IL-10) in UC tissues. Gut microbiota was analyzed through16S rRNA sequencing. Results The main components of KD consist of gallic acid, paeoniflorin, emodin, berberine, coptisine, palmatine, jatrorrhizine, baicalein and baicalin. The UC model was successfully established by causing intestinal barrier injury with the loss of intestinal villi and destructed mitochondria of intestinal epithelial cells. Both sulfasalazine and KD treatment repaired UC injury, reduced the levels of malondialdehyde, TNFα, IL-1, IL-6, TLR4, p-PI3K, p-AKT, and p-NF-κB, and increased the levels of SOD, GPx, CAT, and IL-10. KD showed a protective function for the UC model in a dose-dependent way. The serum levels of paeoniflorin and baicalin had a strong relationship with the levels of inflammatory and oxidative stress biomarkers. KD treatment increased the proportion of Alloprevotella, Treponema, Prevotellaceae, and Prevotella, and reduced the proportion of Escherichia_Shigella and Desulfovibrio in gut microbiota. Conclusions KD improved intestinal barrier injury of ulcerative colitis, antioxidant and anti-inflammatory properties by affecting TLR4-dependent PI3K/AKT/NF-κB signaling possibly through the combination of its main compounds, and improving gut microbiota.
Collapse
Affiliation(s)
- Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Xuehua Piao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Wei Niu
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Qingyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Chi Ma
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Tong Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - QiChang Gu
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Tingfang Cui
- Department of Gastroenterology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Shuangdi Li
- Heart Disease Center, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Küpeli Akkol E, Gürağaç Dereli FT, Taştan H, Sobarzo-Sánchez E, Khan H. Effect of Sorbus domestica and its active constituents in an experimental model of colitis rats induced by acetic acid. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112521. [PMID: 31883473 DOI: 10.1016/j.jep.2019.112521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Turkish folk medicine, leaves of Sorbus domestica are used for the treatment of burns, cough, stomachache, bradyuria, kidney stone. The fruits of this plant are used for diarrhoea. AIM OF THE STUDY This study was carried out to investigate the effect of S. domestica on ulcerative colitis induced by acetic acid in rats. MATERIALS AND METHODS The crude methanolic extract of fruits was sequentially fractionated into five subextracts; dichloromethane, diethyl ether, ethyl acetate, n-butanol and aqueous extracts. Effects of the extract, subextracts and fractions were investigated in acetic acid-induced rat colitis model. The colonic interleukin-6 (IL-6), tumor necrosis factor (TNF-α), nitrite, superoxide dismutase (SOD), glutathione (GSH), lipid peroxidation (LPO), catalase (CAT), and malondialdehyde (MDA) levels as well as the caspase-3 and myeloperoxidase (MPO) activities were measured to determine the activity. Histopathological analyzes were also performed on the colon tissue of rats. RESULTS The methanolic extract and diethylether subextract have led to a noteworthy decrease in MPO, caspase-3, IL-6, TNF-α, MDA, and nitrite levels in the colon tissue and blood. In addition, histopathological analysis results were supported by biochemical parameters. After confirmation of the activity against ulcerative colitis, the diethyl ether subextract was subjected to more chromatographic separation for the isolation of compounds 1, 2 and 3. The structures of these three compounds were elucidated as vanillic acid 4-O-α-L-rhamnopyranoside (1), protocateuic acid anhydrite (2) and trivanilloyl-(1,3,4-trihydroxybenzol) ester (3). CONCLUSION In this study, the potential of S. domestica in the treatment of colitis was investigated. Fruits of this plant were found to have important anti-inflammatory and antioxidant activities. Through isolation techniques, vanillic acid 4-O-α-L-rhamnopyranoside, protocateuic acid anhydrite and trivanilloyl-(1,3,4-trihydroxybenzol) ester were determined as the main active components of the fruits. Consequently, S domestica might be a promising candidate for upcoming use the prevention and treatment of various disorders, such as inflammatory bowel diseases, irritable bowel syndrome and Clostridium difficile infection.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | | | - Hakkı Taştan
- Department of Biology, Faculty of Science, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud Facultad de Ciencias de la Salud Universidad Central de Chile, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
26
|
Süntar I, Cevik CK, Çeribaşı AO, Gökbulut A. Healing effects of Cornus mas L. in experimentally induced ulcerative colitis in rats: From ethnobotany to pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112322. [PMID: 31644942 DOI: 10.1016/j.jep.2019.112322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnobotanical studies conducted in Turkey and other countries have revealed that Cornus mas L., from the family Cornaceae have been used against stomachache, diarrhea and colitis. AIM OF THE STUDY The objective the present study is to determine the possible activity of C. mas in experimentally induced ulcerative colitis in rats and to identify its phytochemical feature. MATERIALS AND METHODS 2,4,6-Trinitrobenzene sulfonic acid-induced colitis model was induced in rats. The rats were orally treated with different doses (50, 100, 200 and 400 mg/kg) of C. mas 80% methanol extract for 14 days. Increase in body weight, consumed amount of feed, form of the stool, presence of rectal prolapse were followed every day. At the end of the experiment, colon tissues were removed and wet weights for each animal were measured and colon damages were scored. Total antioxidant and total oxidant status, cytokine (TNF-α and IL-1β) and protein levels of colon tissues were evaluated and histopathological analyses were carried out. After the detection of the effective dose as 400 mg/kg, the aqueous methanol extract was fractionated by using liquid-liquid fractionation technique and the sub-extracts were also tested for in vivo biological activities. High Performance Liquid Chromatography analyses were conducted to determine the phytochemical profile of the active crude extract and n-butanol sub-extract. RESULTS Amount of feed consumed per day and increase in body weight were the lowest in the control group, while those values were determined to be the highest in 80% methanol extract (at 400 mg/kg dose), n-butanol sub-extract and reference groups. Following colitis induction, it was determined that the fecal form was yellow-slippery in all groups and returned to normal after the treatment with C. mas extracts. Rectal prolapse score was less in the extract (400 mg/kg) and n-butanol sub-extract treated groups. Total antioxidant, total oxidant status, cytokine and protein levels were found to be in parallel with macroscopic findings. 80% methanol extract (400 mg/kg) and n-butanol sub-extract provided the best healing according to the wet weight measurements and colon damage scoring performed on the removed colon tissues. These findings supported the results of histopathological analysis. According to the chromatographic analysis, ellagic acid was determined in both extracts and its amount was quantified. CONCLUSIONS The present study has verified the ethnomedical use of C. mas for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey.
| | - Can Kerem Cevik
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey
| | - Ali Osman Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazig, Turkey
| | - Alper Gökbulut
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey
| |
Collapse
|
27
|
Yuan J, Cheng W, Zhang G, Ma Q, Li X, Zhang B, Hu T, Song G. Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway. Int Immunopharmacol 2020; 81:106240. [PMID: 32044657 DOI: 10.1016/j.intimp.2020.106240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Morroniside and loganin are iridoid glycosides extracted from Cornus officinalis, a plant species widely used in traditional Chinese medicine. However, the anti-inflammatory effects of morroniside and loganin in colitis are barely understood. The aim of the present study was to explore the effects of morroniside and loganin on the dextran sodium sulfate (DSS)-induced murine model of colitis and an LPS-induced colorectal cancer (CRC) cell inflammation model, and to clarify the underlying mechanisms. We found that morroniside and loganin were able to ameliorate clinical features, including disease activity index (DAI), histological inflammation score and periodic acid-Schiff staining (PAS). In the mouse model, morroniside and loganin treatment increased expression of tight junction proteins (TJs) and decreased pro-inflammatory cytokine production. Moreover, our findings showed that the expression of p-STAT3 and p-p65 were suppressed compared to the disease group. In in vitro experiments, treatment with morroniside and loganin had no obvious effects on proliferative activity in HCT116 cells and HIEC-6 cells. Expression of pro-inflammatory cytokines was inhibited by morroniside and loganin treatment in comparison with the LPS-treated group. Taken together, morroniside and loganin have beneficial effects on colitis in vivo and are anti-inflammatory in vitro. Possible mechanisms of the anti-inflammatory response may include blockade of the STAT3/NF-κB pathway.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Bing Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
28
|
Montanari E, Di Meo C, Coviello T, Gueguen V, Pavon-Djavid G, Matricardi P. Intracellular Delivery of Natural Antioxidants via Hyaluronan Nanohydrogels. Pharmaceutics 2019; 11:pharmaceutics11100532. [PMID: 31615083 PMCID: PMC6835714 DOI: 10.3390/pharmaceutics11100532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Natural antioxidants, such as astaxanthin (AX), resveratrol (RV) and curcumin (CU), are bioactive molecules that show a number of therapeutic effects. However, their applications are remarkably limited by their poor water solubility, physico-chemical instability and low bioavailability. In the present work, it is shown that self-assembled hyaluronan (HA)-based nanohydrogels (NHs) are taken up by endothelial cells (Human Umbilical Vein Endothelial Cells, HUVECs), preferentially accumulating in the perinuclear area of oxidatively stressed HUVECs, as evidenced by flow cytometry and confocal microscopy analyses. Furthermore, NHs are able to physically entrap and to significantly enhance the apparent water solubility of AX, RV and CU in aqueous media. AX/NHs, RV/NHs and CU/NHs systems showed good hydrodynamic diameters (287, 214 and 267 nm, respectively), suitable ζ-potential values (-45, -43 and -37 mV, respectively) and the capability to neutralise reactive oxygen species (ROS) in tube. AX/NHs system was also able to neutralise ROS in vitro and did not show any toxicity against HUVECs. This research suggests that HA-based NHs can represent a kind of nano-carrier suitable for the intracellular delivery of antioxidant agents, for the treatment of oxidative stress in endothelial cells.
Collapse
Affiliation(s)
- Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Paris 13 University, Sorbonne Paris Cite 99, Av. Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Paris 13 University, Sorbonne Paris Cite 99, Av. Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
29
|
Amirshahrokhi K. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int Immunopharmacol 2019; 76:105884. [PMID: 31499267 DOI: 10.1016/j.intimp.2019.105884] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disorder characterized by oxidative stress and upregulation of proinflammatory mediators in colonic tissue. Febuxostat, a xanthine oxidase inhibitor has been shown to exert anti-inflammatory and antioxidant effects. The aim of this study was to investigate the protective effect of febuxostat against ulcerative colitis, and to elucidate the potential mechanisms involved. Experimental colitis was induced in mice by intrarectal administration of 5% acetic acid. Mice were treated with febuxostat (10 and 20 mg/kg/day, orally) for three days. Results showed that body weight loss, colon shortening, macroscopic damage and histopathological changes of colonic mucosa were reduced in mice treated with febuxostat. Treatment of mice with febuxostat significantly increased the levels of glutathione (GSH) and superoxide dismutase (SOD), and decreased the levels of malondialdehyde (MDA), carbonyl protein, xanthine oxidase, nitric oxide (NO) and myeloperoxidase (MPO) activity of colon tissue compared with those in the acetic acid-induced colitis group. The expression of nuclear factor kappa B (NF-κB) as a key regulator of inflammation in the colonic tissue was decreased by febuxostat. Furthermore treatment with febuxostat significantly reduced the levels of proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and interferon (IFN)-γ, while increased the levels of IL-10 compared with the colitis group. These results suggest that febuxostat is able to decrease the severity of acetic acid-induced colitis by inhibition of oxidative stress and inflammatory responses through NF-κB pathway.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, P. O. Box 5618953141, Ardabil, Iran.
| |
Collapse
|
30
|
Ferrante C, Recinella L, Ronci M, Orlando G, Di Simone S, Brunetti L, Chiavaroli A, Leone S, Politi M, Tirillini B, Angelini P, Covino S, Venanzoni R, Vladimir-Knežević S, Menghini L. Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba-venti extracts in isolated rat colon: Focus on antioxidant, anti-inflammatory, and antimicrobial activities in vitro. Phytother Res 2019; 33:2387-2400. [PMID: 31322313 DOI: 10.1002/ptr.6429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Phlomis fruticosa L. and P. herba-venti are species belonging to the Lamiaceae family, which have been traditionally used to prepare tonic and digestive drinks. Multiple studies also demonstrated the inhibitory effects of P. fruticosa extracts and essential oil against oxidative/proinflammatory pathways and bacterial strains deeply involved in ulcerative colitis. Considering these findings, the present study evaluated the effects of alcoholic P. fruticosa and P. herba-venti leaf extracts in isolated rat colon challenged with Escherichia coli lipopolysaccharide (LPS), an ex vivo experimental paradigm of ulcerative colitis. In this context, we assayed colon levels of pro-oxidant and proinflammatory biomarkers, including nitrites, malondialdehyde (MDA), lactate dehydrogenase (LDH), and serotonin (5-HT). Additionally, the extracts have been tested in order to evaluate possible inhibitory effects on specific bacterial and fungal strains involved in ulcerative colitis. Alcoholic P. fruticosa and P. herba-venti extracts were able to blunt LPS-induced nitrite, MDA, 5-HT, and LDH levels in isolated rat colon. The same extracts also inhibited the growth of Pseudomonas aeruginosa, E. coli, Staphylococcus aureus, Candida albicans and Candida tropicalis. In conclusion, our findings show a potential role exerted by alcoholic P. fruticosa and P. herba-venti in managing the clinical symptoms related to ulcerative colitis.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Matteo Politi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Bruno Tirillini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000, Zagreb, Croatia
| | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
31
|
Zengin G, Ferrante C, Senkardes I, Gevrenova R, Zheleva-Dimitrova D, Menghini L, Orlando G, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Rengasamy KR, Mahomoodally MF. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127:237-250. [PMID: 30914354 DOI: 10.1016/j.fct.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
In the present study, the biological properties, including, the enzyme inhibitory and antioxidant activities, as well as, the phytochemical profile of the ethyl acetate, methanol, and water extracts of Rubus sanctus Schreb. and Rubus ibericus Juz. leaves were determined using in vitro bioassays. Wide range of phytochemicals, including, hydroxybenzoic acids, hydroxycinnamic acids, acylquinic acids, ellagitannins, flavonoids, and triterpenoid saponins were determined using UHPLC-ESI/HRMS technique. The ethyl acetate and methanol extracts of the studied Rubus species effectively inhibited acetyl and butyryl cholinesterase. On the other hand, R. sanctus water extract showed low inhibition against α-amylase and prominent inhibitory action against α-glucosidase. Data collected from this study reported the radical scavenging and reducing potential of the studied Rubus species. Investigation of the protective effects of the different extracts of R. sanctus and R. ibericus in experimental model of ulcerative colitis was performed. The extracts were also tested on spontaneous migration of human colon cancer cells (HCT116) in wound healing experimental paradigm. Only R. sanctus methanol extract inhibited spontaneous HCT116 migration in the wound healing test. Our results suggested that R. sanctus and R. ibericus may be potential candidates as sources of biologically-active compounds for the development of nutraceuticals, pharmaceuticals, and/or cosmetics.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey.
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy.
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | | | - Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
32
|
Środa-Pomianek K, Michalak K, Palko-Łabuz A, Uryga A, Świątek P, Majkowski M, Wesołowska O. The Combined Use of Phenothiazines and Statins Strongly Affects Doxorubicin-Resistance, Apoptosis, and Cox-2 Activity in Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20040955. [PMID: 30813251 PMCID: PMC6412564 DOI: 10.3390/ijms20040955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023] Open
Abstract
Since none of the multidrug resistance (MDR) modulators tested so far found their way into clinic, a novel approach to overcome the MDR of cancer cells has been proposed. The combined use of two MDR modulators of dissimilar mechanisms of action was suggested to benefit from the synergy between them. The effect of three phenothiazine derivatives that were used as single agents and in combination with simvastatin on cell growth, apoptosis induction, activity, and expression of cyclooxygenase-2 (COX-2) in doxorubicin-resistant colon cancer cells (LoVo/Dx) was investigated. Treatment of LoVo/Dx cells by phenothiazine derivatives combined with simvastatin resulted in an increase of doxorubicin cytotoxicity and its intracellular accumulation as compared to the treatment with phenothiazine derivatives that were used as single agents. Similarly, LoVo/Dx cells treated with two-component mixture of modulators showed the reduced expression of ABCB1 (P-glycoprotein) transporter and COX-2 enzyme, both on mRNA and protein level. Reduced expression of anti-apoptotic Bcl-2 protein and increased expression of pro-apoptotic Bax were also detected. Additionally, COX-2 activity was diminished, and caspase-3 activity was increased to a higher extent by phenothiazine derivative:simvastatin mixtures than by phenothiazine derivatives themselves. Therefore, the introduction of simvastatin strengthened the anti-MDR, anti-inflammatory, and pro-apoptotic properties of phenothiazines in LoVo/Dx cells.
Collapse
Affiliation(s)
- Kamila Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Krystyna Michalak
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Anna Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Anna Uryga
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland.
| | - Michał Majkowski
- Confocal Microscopy Laboratory, Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland.
| | - Olga Wesołowska
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50-368 Wroclaw, Poland.
| |
Collapse
|