1
|
Siberski-Cooper CJ, Mayes MS, Gorden PJ, Kramer L, Bhatia V, Koltes JE. The genetic architecture of complete blood counts in lactating Holstein dairy cows. Front Genet 2024; 15:1360295. [PMID: 38601075 PMCID: PMC11004310 DOI: 10.3389/fgene.2024.1360295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Complete blood counts (CBCs) measure the abundance of individual immune cells, red blood cells, and related measures such as platelets in circulating blood. These measures can indicate the health status of an animal; thus, baseline circulating levels in a healthy animal may be related to the productive life, resilience, and production efficiency of cattle. The objective of this study is to determine the heritability of CBC traits and identify genomic regions that are associated with CBC measurements in lactating Holstein dairy cattle. The heritability of CBCs was estimated using a Bayes C0 model. The study population consisted of 388 cows with genotypes at roughly 75,000 markers and 16 different CBC phenotypes taken at one to three time points (n = 33, 131, and 224 for 1, 2, and 3 time points, respectively). Heritabilities ranged from 0.00 ± 0.00 (red cell distribution width) to 0.68 ± 0.06 (lymphocytes). A total of 96 different 1-Mb windows were identified that explained more than 1% of the genetic variance for at least one CBC trait, with 10 windows explaining more than 1% of the genetic variance for two or more traits. Multiple genes in the identified regions have functions related to immune response, cell differentiation, anemia, and disease. Positional candidate genes include RAD52 motif-containing protein 1 (RDM1), which is correlated with the degree of immune infiltration of immune cells, and C-X-C motif chemokine ligand 12 (CXCL12), which is critically involved in neutrophil bone marrow storage and release regulation and enhances neutrophil migration. Since animal health directly impacts feed intake, understanding the genetics of CBCs may be useful in identifying more disease-resilient and feed-efficient dairy cattle. Identification of genes responsible for variation in CBCs will also help identify the variability in how dairy cattle defend against illness and injury.
Collapse
Affiliation(s)
| | - Mary S. Mayes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Patrick J. Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Luke Kramer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Vishesh Bhatia
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - James E. Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 PMCID: PMC11526157 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Song S, Lin Z, Zhao C, Wen J, Chen J, Xie S, Qi H, Wang J, Su X. Vagal-mAChR4 signaling promotes Friend virus complex (FV)-induced acute erythroleukemia. Virol Sin 2023:S1995-820X(23)00053-6. [PMID: 37172825 DOI: 10.1016/j.virs.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Erythroleukemia belongs to acute myeloid leukemia (AML) type 6 (M6), and treatment remains difficult due to the poor prognosis of the disease. Friend virus (FV) is a complex of two viruses: Friend murine leukemia virus (F-MuLV) strain along with a defective spleen focus forming virus (SFFV), which can induce acute erythroleukemia in mice. We have previously reported that activation of vagal α7 nicotinic acetylcholine receptor (nAChR) signaling promotes HIV-1 transcription. Whether vagal muscarinic signaling mediates FV-induced erythroleukemia and the underlying mechanisms remain unclear. In this study, sham and vagotomized mice were intraperitoneally injected with FV. FV infection caused anemia in sham mice, and vagotomy reversed this change. FV infection increased erythroblasts ProE, EryA, and EryB cells in the spleen, and these changes were blocked by vagotomy. In bone marrow, FV infection reduced EryC cells in sham mice, an effect that was counteracted by vagotomy. FV infection increased choline acetyltransferase (ChAT) expression in splenic CD4+ and CD8+ T cells, and this change was reversed by vagotomy. Furthermore, the increase of EryA and EryB cells in spleen of FV-infected wild-type mice was reversed after deletion of ChAT in CD4+ T cells. In bone marrow, FV infection reduced EryB and EryC cells in sham mice, whereas lack of ChAT in CD4+ T cells did not affect this change. Activation of muscarinic acetylcholine receptor 4 (mAChR4) by clozapine N-oxide (CNO) significantly increased EryB in the spleen but decreased the EryC cell population in the bone marrow of FV-infected mice. Thus, vagal-mAChR4 signaling in the spleen and bone marrow synergistically promotes the pathogenesis of acute erythroleukemia. We uncover an unrecognized mechanism of neuromodulation in erythroleukemia.
Collapse
Affiliation(s)
- Shuting Song
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Wen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huaxin Qi
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200031, China.
| |
Collapse
|
4
|
Ying-ying G, Yan-fang W, Yan D, Su-ying Z, Dong L, Bin L, Xue W, Miao D, Rui-lin M, Xiao-hui L, Yu-pei J, Ai-jun S. Metabolomic mechanism and pharmacodynamic material basis of Buxue Yimu pills in the treatment of anaemia in women of reproductive age. Front Pharmacol 2023; 13:962850. [PMID: 36703727 PMCID: PMC9871362 DOI: 10.3389/fphar.2022.962850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Objective: To explore the pharmacological basis and mechanism of Buxue Yimu pills (BYP) in the treatment of anaemia in women from the perspective of metabolomics and network analysis. Materials and Methods: Forty-six women of reproductive age with haemoglobin 70-110 g/L were recruited. Blood samples were collected before and after 4 weeks of oral BYP treatment to assess the changes in haemoglobin, coagulation function, and iron metabolism indices. An integrated analysis of metabolomics (liquid chromatography mass spectrometry) and network analysis was performed to identify the potential pharmacodynamic mechanisms of BYP. Results: After BYP treatment, the haemoglobin level of patients significantly increased from 93.67 ± 9.77 g/L to 109.28 ± 12.62 g/L (p < 0.01), while no significant changes were found in iron metabolism and coagulation-related indicators. A total of 22 differential metabolites were identified after metabolomics analysis, which were mainly related to the inhibition of inflammation and oxidative stress. Integrating pharmacodynamics and metabolomics, a network of drug-active components-targets-metabolic pathways-metabolomics was established. Acetylcholinesterase, phospholipase A2 group IIA, and phospholipase A2 group IVA may be the most promising therapeutic targets. Conclusion: BYP can inhibit inflammation and oxidative stress as well as promote haematopoiesis, potentially improving anaemia.
Collapse
Affiliation(s)
- Guo Ying-ying
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Yan-fang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhang Su-ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liu Dong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Luo Bin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Wang Xue
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Deng Miao
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Ma Rui-lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Xiao-hui
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Yu-pei
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | | |
Collapse
|
5
|
The Interplay between Anticholinergic Burden and Anemia in Relation to 1-Year Mortality among Older Patients Discharged from Acute Care Hospitals. J Clin Med 2021; 10:jcm10204650. [PMID: 34682773 PMCID: PMC8539729 DOI: 10.3390/jcm10204650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Anticholinergic burden (ACB) and anemia were found associated with an increased risk of death among older patients. Additionally, anticholinergic medications may contribute to the development of anemia. Therefore, we aimed at investigating the prognostic interplay of ACB and anemia among older patients discharged from hospital. Our series consisted of 783 patients enrolled in a multicenter observational study. The outcome of the study was 1 year mortality. ACB was assessed by an Anticholinergic Cognitive Burden score. Anemia was defined as hemoglobin < 13 g/dL in men and <12 g/dL in women. The association between study variables and mortality was investigated by Cox regression analysis. After adjusting for several potential confounders, ACB score = 2 or more was significantly associated with the outcome in anemic patients (HR = 1.93, 95%CI = 1.13–3.40), but not non anemic patients (HR = 1.51, 95%CI = 0.65–3.48). An additive prognostic interaction between ACB and anemia was observed (p = 0.02). Anemia may represent a relevant effect modifier in the association between ACB and mortality.
Collapse
|
6
|
Yuan Y, Zhao J, Li T, Ji Z, Xin Y, Zhang S, Qin F, Zhao L. Integrative metabolic profile of myelodysplastic syndrome based on UHPLC-MS. Biomed Chromatogr 2021; 35:e5136. [PMID: 33844331 DOI: 10.1002/bmc.5136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023]
Abstract
Myelodysplastic syndrome (MDS) is a neoplastic disease originating from hematopoietic stem cells. Currently, hematopoietic stem cell transplantation (HSCT) is the most effective cure, although lenalidomide, azacytidine, and decitabine have been applied to relieve symptoms of MDS. The purpose of this study was to evaluate the changes in endogenous metabolites by applying a UHPLC-MS (ultra-high-performance liquid chromatography-MS) metabolomics approach and to investigate metabolic pathways related to MDS. An untargeted metabolomics approach based on UHPLC-MS in combination with multivariate data analysis, including partial least squares discrimination analysis and orthogonal partial least squares discriminant analysis, was established to investigate potential biomarkers in the plasma of MDS patients. As a result, 29 biomarkers were identified to distinguish between MDS patients, HSCT patients, and healthy controls, which were mainly related to inflammation regulation, amino acid metabolism, fatty acid metabolism, and energy metabolism. To our knowledge, this is the first time where plasma metabolomics was combined with HSCT to study the pathogenesis and therapeutic target of MDS. The identification of biomarkers and analysis of metabolic pathways could offer the possibility of discovering new therapeutic targets for MDS in the future.
Collapse
Affiliation(s)
- Yunxia Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Taifeng Li
- Department of Pharmacy, Peking University People's Hospital, Beijing, P. R. China
| | - Zhengchao Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin Province, P. R. China
| | - Ying Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Siyao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
7
|
Wu Q, Xia Y, Dai K, Bai P, Kwan KKL, Guo MSS, Dong TTX, Tsim KWK. Solar light induces the release of acetylcholine from skin keratinocytes affecting melanogenesis. FASEB J 2020; 34:8941-8958. [PMID: 32519787 DOI: 10.1096/fj.202000708r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Cholinergic system conducts signal transmission in brain and muscle. Besides nervous system, the nonneuronal functions of cholinergic system have been proposed in various tissues. The expression of cholinergic proteins and release of acetylcholine in human skin have been reported, but its mechanism and influence on dermatological functions is not elucidated. Here, the expression profile of cholinergic markers was further investigated in skin and keratinocyte. The expression levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), vesicular acetylcholine transporter (VAChT), and synaptophysin, were upregulated during differentiation of keratinocytes. In cultured keratinocytes, a transient exposure of solar light induced the release of acetylcholine, which was mediated by intracellular Ca2+ mobilization. The light-induced acetylcholine release was mediated by the present of opsin. The light-induced melanogenesis was inhibited by acetylcholine or AChE inhibitor in melanocyte in vitro and mouse skin ex vivo. These results indicated that the potential role of cholinergic system could be a negative regulator in skin pigmentation.
Collapse
Affiliation(s)
- Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiteng Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kun Dai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Panzhu Bai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kenneth K L Kwan
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Maggie S S Guo
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|