1
|
Morgan RK, Tapaswi A, Polemi KM, Miller JL, Sexton J, Bakulski KM, Svoboda LK, Dolinoy DC, Colacino JA. Environmentally Relevant Lead Exposure Alters Cell Morphology and Expression of Neural Hallmarks During SH-SY5Y Neuronal Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638689. [PMID: 40027621 PMCID: PMC11870460 DOI: 10.1101/2025.02.17.638689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lead (Pb) continues to be a public health burden, in the US and around the world, and yet the effects of historical and current exposure levels on neurogenesis are not fully understood. Here we examine the effects of a range of environmentally relevant Pb concentrations (0.16μM, 1.26μM, and 10μM Pb) relative to control on neural differentiation in the SH-SY5Y cell model. Pb exposure began on Day 5 and continued throughout differentiation at Day 18. We assessed morphological measures related to neurogenesis at several time points during this process, including the expression of proteins key in neural differentiation (β-tubulin III and GAP43), cell number and size, as well as the development of neurites. The bulk of detectable changes occurred with 10μM Pb exposure, most notably that of β-tubulin III and GAP43 expression. Effects with the 0.16μM and 1.26μM Pb exposure conditions increased as differentiation progressed, with significant reductions in cell and nuclear size as well as the number and length of neural projections by Day 18. Best benchmark concentration (BMC) analysis revealed many of these metrics to be susceptible to levels of Pb at or below historically relevant levels. This work highlights the disruption of neurite formation and protein expression as potential new mechanisms by which environmentally relevant Pb exposure impacts neurogenesis and morphology and perturb cognitive health throughout the life course.
Collapse
|
2
|
Sobański D, Sobańska M, Staszkiewicz R, Strojny D, Grabarek BO. Changes in the Expression Profile of Growth-Associated Protein 43 in Degenerative Lumbosacral Stenosis. J Clin Med 2025; 14:1223. [PMID: 40004753 PMCID: PMC11856692 DOI: 10.3390/jcm14041223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Degenerative spinal stenosis is a common condition associated with structural degeneration and pain, yet its molecular underpinnings remain incompletely understood. Growth-associated protein 43 (GAP-43), a key player in neuronal plasticity and regeneration, may serve as a biomarker for disease progression and pain severity. This study investigates the expression of GAP-43 at the mRNA and protein levels in the ligamentum flavum of affected patients. Methods: Samples were collected from 96 patients with degenerative spinal stenosis and 85 controls. GAP-43 mRNA expression was analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), while protein levels were quantified via enzyme-linked immunosorbent assay (ELISA) and Western blot. Pain severity was assessed using the visual analog scale (VAS), and associations with lifestyle factors were analyzed. Results:GAP-43 mRNA expression was significantly downregulated in the study group compared to the controls (fold change = 0.58 ± 0.12, p < 0.05), with an inverse correlation to VAS pain severity (fold change = 0.76 at VAS 4 vs. 0.36 at VAS 10). Conversely, GAP-43 protein levels were markedly elevated in the study group (5.57 ± 0.21 ng/mL) when compared to controls (0.54 ± 0.87 ng/mL, p < 0.0001). Protein levels were also correlated with lifestyle factors, including smoking and alcohol consumption (p < 0.05). Conclusions: GAP-43 shows potential as a biomarker for pain severity and disease progression in degenerative spinal stenosis, in a manner influenced by lifestyle factors. Further research is needed to explore its diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Dawid Sobański
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland;
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (R.S.); (D.S.); (B.O.G.)
| | - Małgorzata Sobańska
- Department of Neurosurgery, Szpital sw. Rafala in Cracow, 30-693 Cracow, Poland;
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (R.S.); (D.S.); (B.O.G.)
| | - Rafał Staszkiewicz
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (R.S.); (D.S.); (B.O.G.)
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
- Department of Neurosurgery, Faculty of Medicine in Zabrze, Academy of Silesia, 40-555 Katowice, Poland
| | - Damian Strojny
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (R.S.); (D.S.); (B.O.G.)
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, 37-700 Przemyśl, Poland
- New Medical Techniques Specialist Hospital of St. Family in Rudna Mała, 36-060 Rzeszów, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland; (R.S.); (D.S.); (B.O.G.)
| |
Collapse
|
3
|
Dhapola R, Sharma P, Kumari S, Bhatti JS, HariKrishnaReddy D. Environmental Toxins and Alzheimer's Disease: a Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol Neurobiol 2024; 61:3657-3677. [PMID: 38006469 DOI: 10.1007/s12035-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease is a leading cause of mortality worldwide. Inorganic and organic hazards, susceptibility to harmful metals, pesticides, agrochemicals, and air pollution are major environmental concerns. As merely 5% of AD cases are directly inherited indicating that these environmental factors play a major role in disease development. Long-term exposure to environmental toxins is believed to progress neuropathology, which leads to the development of AD. Numerous in-vitro and in-vivo studies have suggested the harmful impact of environmental toxins at cellular and molecular level. Common mechanisms involved in the toxicity of these environmental pollutants include oxidative stress, neuroinflammation, mitochondrial dysfunction, abnormal tau, and APP processing. Increased expression of GSK-3β, BACE-1, TNF-α, and pro-apoptotic molecules like caspases is observed upon exposure to these environmental toxins. In addition, the expression of neurotrophins like BDNF and GAP-43 have been found to be reduced as a result of toxicity. Further, modulation of signaling pathways involving PARP-1, PGC-1α, and MAPK/ERK induced by toxins have been reported to contribute in AD pathogenesis. These pathways are a promising target for developing novel AD therapeutics. Drugs like epigallocatechin-gallate, neflamapimod, salsalate, dexmedetomidine, and atabecestat are in different phases of clinical trials targeting the pathways for possible treatment of AD. This review aims to culminate the correlation between environmental toxicants and AD development. We emphasized upon the signaling pathways involved in the progression of the disease and the therapeutics under clinical trial targeting the altered pathways for possible treatment of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151 401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India.
| |
Collapse
|
4
|
Lokesh M, Bandaru LJM, Rajanna A, Rao JS, Challa S. Unveiling Potential Neurotoxic Mechansisms: Pb-Induced Activation of CDK5-p25 Signaling Axis in Alzheimer's Disease Development, Emphasizing CDK5 Inhibition and Formation of Toxic p25 Species. Mol Neurobiol 2024; 61:3090-3103. [PMID: 37968421 DOI: 10.1007/s12035-023-03783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with an etiology influenced by various genetic and environmental factors. Heavy metals, such as lead (Pb), have been implicated in AD pathogenesis, but the underlying mechanisms remain poorly understood. This study investigates the potential neurodegenerative role of Pb and amyloid β peptides (1-40 and 25-35) via their interaction with cyclin-dependent kinase 5 (CDK5) and its activator, p25, in an attempt to unravel the molecular basis of Pb-induced neurotoxicity in neuronal cells. To this end, a CDK5 inhibitor was utilized to selectively inhibit CDK5 activity and investigate its impact on neurodegeneration. The results revealed that Pb exposure led to elevated Pb uptake (56.7% at 15 μM Pb) and disturbances in intracellular calcium (19.6% increase upon Pb treatment). The results revealed a significant decrease in total antioxidant capacity (by 88.6% upon Pb treatment) and also elevation in protein carbonylation (by 26.2% upon Pb and Aβp's combination treatment), indicative of oxidative damage, suggesting an impaired cellular defence against oxidative stress and elevated DNA oxidative damage (178 pg/ml and 182 pg/ml of 8-OH-dG upon Pb and All treatment). Additionally, dysregulations in levels of calpain, p25-35 and CDK5 are observed and markers associated with antioxidant metabolism (phospho-Peroxiredoxin 1), DNA damage responses (phospho-ATM and phospho-p53), and nuclear membrane disruption (phospho-lamin A/C) were observed, supporting the role of Pb-induced CDK5-p25 signaling in AD pathogenesis. These findings shed light on the intricate molecular events underlying Pb-induced neurotoxicity and provide valuable insights into the mechanisms that contribute to AD development.
Collapse
Affiliation(s)
- Murumulla Lokesh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Ajumeera Rajanna
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - J Sreenivasa Rao
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
5
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Wang Q, Ma Y, Li Y, He Z, Feng B. Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via modulating the PKCα/Cx43 signaling pathway. Chem Biol Interact 2023; 376:110451. [PMID: 36925031 DOI: 10.1016/j.cbi.2023.110451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the regulatory mechanism of Pb regulates gap junction intercellular communication to induced apoptosis in H9c2 cells. METHODS H9c2 cell line is used as the research object in this study, and treated with different concentrations of Pb acetate. Subsequently, Cell viability was measured by the Cell Counting Kit-8 (CCK-8) assay. The levels of lactate dehydrogenase (LDH), aspartate transaminase (AST) and creatine kinase-MB (CK-MB) in the supernatants were measured using respective commercial enzyme-linked immune sorbent assay (ELISA) kits. Western blot was used to detect the expression of apoptosis-related protein in H9c2 cells in each group. Quantitative RT-PCR Analysis Total RNA was extracted from frozen H9c2 cells using Trizol reagent, the PKCα and Cx43 in the supernatant of H9c2 cells was determined by the BCA protein detection kit. RESULTS H9c2 cells increased release of cardiac enzymes (LDH, AST, and CK-MB) and decreased cell survival rate, and the Cx43, p-Cx43, PKCα and p-PKCα protein levels showed a dose-dependent decrease after Pb treatment. PKCα was activated with PMA, the relative expression level of Cx43 protein increased significantly, the expression of Bcl-2 increased and Bax and Cyt-c decreased compared with Pb exposure group, and the myocardial enzymes (LDH, AST, and CK-MB) in cell culture supernatant decreased compared with Pb exposure group, indicating that the degree of cell damage was alleviated. Results showed that Pb inhibited PKCα activity, decreased the expression of total Cx43 and P-Cx43 protein, and aggravated myocardial injury. CONCLUSIONS Pb decrease gap junction intercellular communication, which induce apoptosis in H9c2 cells by inhibiting the PKCα/Cx43 signaling pathway.
Collapse
Affiliation(s)
- Qiong Wang
- Jinan Center for Disease Control and Prevention, Ji'nan, 250021, Shandong, China
| | - Yinghua Ma
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Yi Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Zhen He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China; Shandong Province Hospital of Occupational Diseases, Ji'nan, 250002, Shandong, China.
| | - Bin Feng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China.
| |
Collapse
|
7
|
D’Amico R, Tomasello M, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Abdelhameed AS, Fusco R, Calabrese V, Cuzzocrea S, Di Paola R. Mechanism of Action of Natural Compounds in Peripheral Multiorgan Dysfunction and Hippocampal Neuroinflammation Induced by Sepsis. Antioxidants (Basel) 2023; 12:antiox12030635. [PMID: 36978883 PMCID: PMC10045853 DOI: 10.3390/antiox12030635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis have increased rates of central nervous system (CNS) morbidities, which are linked to long-term cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury and hyperinflammation observed in the acute phase of sepsis and on the development of long-term neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage. Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses were performed, and serum and brain (hippocampus) samples were harvested at four weeks from surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation. In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione (GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation, nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1), phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3) expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor administration on the long-term development of neuroinflammation and brain dysfunction induced by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to counteract the degenerative process triggered by sepsis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 14451, Saudi Arabia
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Vererinary Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
8
|
Bandaru LJM, Murumulla L, C BL, D KP, Challa S. Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. J Bioenerg Biomembr 2023; 55:79-89. [PMID: 36637735 DOI: 10.1007/s10863-023-09956-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Exposure to the environmental pollutant lead (Pb) has been linked to Alzheimer's disease (AD), in which mitochondrial dysfunction is a pathological consequence of neuronal degeneration. The toxicity of Pb in combination with β-amyloid peptides (1-40) and (25-35) causes selective death in neuronal cells. However, the precise mechanism through which Pb induces Alzheimer's disease, particularly mitochondrial damage, is unknown. Changes in mitochondrial mass, membrane potential, mitochondrial complex activities, mitochondrial DNA and oxidative stress were examined in neuronal cells of human origin exposed to Pb and β-amyloid peptides (1-40) and (25-35) individually and in different combinations. The results showed depolarization of mitochondrial membrane potential, decrease in mitochondrial mass, ATP levels and mtDNA copy number in Pb and β-amyloid peptides (1-40) and (25-35) exposed cells. Also, significant reductions in the expression of mitochondrial electron transport chain (ETC) complex proteins (ATP5A, COXIV, UQCRC2, SDHB, NDUFS3), as well as down regulation of ETC complex gene expressions such as COXIV, ATP5F1 and NDUFS3 and antioxidant gene expressions like MnSOD and Gpx4 were observed in exposed cells. Furthermore, Pb and β-amyloid peptides exposure resulted in elevated mitochondrial malondialdehyde levels and a decrease in mitochondrial GSH levels. Our findings suggest that Pb toxicity could be one of the causative factors for the mitochondrial dysfunction and oxidative stress in Alzheimer's disease progression.
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Bindu Lasya C
- Department of Pharmacology, Anurag University, Hyderabad, India
| | | | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
9
|
Staszkiewicz R, Gralewski M, Gładysz D, Bryś K, Garczarek M, Gadzieliński M, Marcol W, Sobański D, Grabarek BO, sobaÅ Ski D, Grabarek BO. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol Pain 2023; 19:17448069231158287. [PMID: 36733259 PMCID: PMC10071099 DOI: 10.1177/17448069231158287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Important neurotrophic factors that are potentially involved in degenerative intervertebral disc (IVD) disease of the spine's lumbosacral (L/S) region include glial cell-derived neurotrophic factor (GDNF) and growth associated protein 43 (GAP-43). The aim of this study was to determine and compare the concentrations of GAP-43 and GDNF in degenerated and healthy IVDs and to quantify and compare the GAP-43-positive and GDNF-positive nerve fibers. The study group consisted of 113 Caucasian patients with symptomatic lumbosacral discopathy (confirmed by a specialist surgeon), an indication for surgical treatment. The control group included 81 people who underwent postmortem examination. GAP-43 and GDNF concentrations were significantly higher in IVD samples from the study group compared with the control group, and the highest concentrations were observed in the degenerated IVDs that were graded 4 on the Pfirrmann scale. In the case of GAP-43, it was found that as the degree of IVD degeneration increased, the number of GAP-43-positive nerve fibers decreased. In the case of GDNF, the greatest number of fibers per mm2 of surface area was found in the IVD samples graded 3 on the Pfirrmann scale, and the number was found to be lower in samples graded 4 and 5. Hence, GAP-43 and GDNF are promising targets for analgesic treatment of degenerative IVD disease of the lumbosacral region of the spine.
Collapse
Affiliation(s)
- Rafał Staszkiewicz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Marcin Gralewski
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Dorian Gładysz
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | - Michał Garczarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Marcin Gadzieliński
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland
| | - Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, 49613Medical University of Silesia, Katowice, Poland.,Department of Neurosurgery, Provincial Specialist Hospital No. 2 in Jastrzębie - Zdrój, Jastrzębie-Zdrój, Poland
| | - Dawid Sobański
- Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland.,Department of Neurosurgery, Szpital sw Rafala w Krakowie, Krakow, Poland
| | - Beniamin Oskar Grabarek
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, Kraków, Poland.,Department of Histology, Cytophysiology, and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia Zabrze, Poland
| | | | | |
Collapse
|
10
|
Kuedo Z, Chotphruethipong L, Raju N, Reudhabibadh R, Benjakul S, Chonpathompikunlert P, Klaypradit W, Hutamekalin P. Oral Administration of Ethanolic Extract of Shrimp Shells-Loaded Liposome Protects against Aβ-Induced Memory Impairment in Rats. Foods 2022; 11:foods11172673. [PMID: 36076858 PMCID: PMC9455250 DOI: 10.3390/foods11172673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is characterized by a progressive loss of memory and cognition. Accumulation of amyloid-beta (Aβ) in the brain is a well-known pathological hallmark of the disease. In this study, the ethanolic extract of white shrimp (Litopenaous vannamei) shells and the ethanolic extract-loaded liposome were tested for the neuroprotective effects on Aβ1-42-induced memory impairment in rats. The commercial astaxanthin was used as a control. Treatment with the ethanolic extract of shrimp shells (EESS) at the dose of 100 mg/kg BW showed no protective effect in Aβ-treated rats. However, treatment with an EESS-loaded liposome at the dose of 100 mg/kg BW significantly improved memory ability in Morris water maze and object recognition tests. The beneficial effect of the EESS-loaded liposome was ensured by the increase of the memory-related proteins including BDNF/TrkB and pre- and post-synaptic protein markers GAP-43 and PSD-95 as well as pErk1/2/Erk1/2 in the cortex and hippocampus. These findings indicated the neuroprotective effects of the EESS-loaded liposome on Aβ-induced memory impairment in rats. It produced beneficial effects on learning behavior probably through the function of BDNF/TrkB/pErk1/2/Erk1/2 signaling pathway and subsequently the upregulation of synaptic proteins. The present study provided evidence that the neuroprotective property of the ESSE-loaded liposome could be a promising strategy for AD protection.
Collapse
Affiliation(s)
- Zulkiflee Kuedo
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pennapa Chonpathompikunlert
- Expert Center of Innovative Health Food and Biodiversity Research Centre, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanwimol Klaypradit
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288-207
| |
Collapse
|
11
|
Comprehensive insight into the neurotoxic mechanisms of low dose Pb exposure in Wistar rats: Benchmark dose analysis. Chem Biol Interact 2022; 360:109932. [DOI: 10.1016/j.cbi.2022.109932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023]
|
12
|
Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, Jiang G. Environmental pollution, a hidden culprit for health issues. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:31-45. [PMID: 38078200 PMCID: PMC10702928 DOI: 10.1016/j.eehl.2022.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/26/2022] [Accepted: 04/23/2022] [Indexed: 12/12/2023]
Abstract
The environmental and health impacts from the massive discharge of chemicals and subsequent pollution have been gaining increasing public concern. The unintended exposure to different pollutants, such as heavy metals, air pollutants and organic chemicals, may cause diverse deleterious effects on human bodies, resulting in the incidence and progression of different diseases. The article reviewed the outbreak of environmental pollution-related public health emergencies, the epidemiological evidence on certain pollution-correlated health effects, and the pathological studies on specific pollutant exposure. By recalling the notable historical life-threatening disasters incurred by local chemical pollution, the damning evidence was presented to criminate certain pollutants as the main culprit for the given health issues. The epidemiological data on the prevalence of some common diseases revealed a variety of environmental pollutants to blame, such as endocrine-disrupting chemicals (EDCs), fine particulate matters (PMs) and heavy metals. The retrospection of toxicological studies provided illustrative clues for evaluating ambient pollutant-induced health risks. Overall, environmental pollution, as the hidden culprit, should answer for the increasing public health burden, and more efforts are highly encouraged to strive to explore the cause-and-effect relationships through extensive epidemiological and pathological studies.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, and Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
13
|
Sim KH, Lee YJ. Perfluorohexane sulfonate induces memory impairment and downregulation of neuroproteins via NMDA receptor-mediated PKC-ERK/AMPK signaling pathway. CHEMOSPHERE 2022; 288:132503. [PMID: 34626661 DOI: 10.1016/j.chemosphere.2021.132503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Perfluorohexane sulfonate (PFHxS) is a widely used industrial chemical detected in human umbilical cord blood and breast milk, and has been suggested to exhibit developmental neurotoxicity. Previous studies on mice reported that neonatal exposure to PFHxS altered neuroprotein levels in the developing brain, and caused behavioral toxicity and cognitive dysfunction in the mature brain. However, the underlying mechanisms responsible for PFHxS-induced neuroprotein dysregulation are poorly understood. In this study, we examined the effect of neonatal exposure to PFHxS on memory function using an in vivo mice model. Furthermore, we examined the levels of growth associated protein-43 (GAP-43) and calcium/calmodulin dependent protein kinase II (CaMKII) (biomarkers of neuronal development) and the involved signaling pathways using differentiated neuronal PC12 cells. PFHxS decreased cell viability, GAP-43 and CaMKII levels, and neurite formation. These effects were mediated by the NMDA receptor, PKC-α, PKC-δ, AMPK and ERK pathways. MK801, an NMDA receptor antagonist, reduced the activation of PKC-α, PKC-δ, ERK and AMPK. The activation of ERK was suppressed by pharmacological and knockdown inhibition of PKC-α and -δ. Interestingly, the AMPK pathway was selectively inhibited by inhibiting PKC-δ but not PKC-ɑ. Consistent with PFHxS-induced neuronal death, and GAP-43 and CaMKII downregulation, neonatal exposure to PFHxS caused significant memory impairment in adult mice. Collectively, these results demonstrate that PFHxS induces persistent developmental neurotoxicity, as well as GAP-43 and CaMKII downregulation via the NMDA receptor-mediated PKCs (α and δ)-ERK/AMPK pathways.
Collapse
Affiliation(s)
- Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Atuadu V, Benneth BA, Oyem J, Esom E, Mba C, Nebo K, Ezemeka G, Anibeze C. Adansonia digitata L. leaf extract attenuates lead-induced cortical histoarchitectural changes and oxidative stress in the prefrontal cortex of adult male Wistar rats. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0116/dmdi-2020-0116.xml. [PMID: 33085634 DOI: 10.1515/dmdi-2020-0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Objectives Adansonia digitata L. is popularly known for the management of various neurological diseases in ethno-medicine. Studies have shown that lead toxicity is a possible risk factor for early onset of neurodegenerative disease. Hence, this study was designed to evaluate the effect of A. digitata aqueous leaf extract (ADALE) against lead-induced oxidative stress and histo-architectural changes in the prefrontal cortex of adult Wistar rats. Methods Saline (10 mL/kg), ADALE (500 and 1000 mg/kg) and EDTA (55 mg/kg) were pretreated orally 30 min prior to lead acetate (LA) (120 mg/kg) administration to male Wistar rats (n=7) for 21 days. Thereafter, standard biochemical (superoxide dismutate, catalase, glutathionxe and malondialdehyde), histological (H&E) and histochemical assessment (crystyl fast violet stain for nissil substance) were carried out in the prefrontal cortex. Results ADALE significantly (p<0.05) reversed LA-induced oxidative stress, as evidenced by increased catalase, superoxide dismutase and oxidized glutathione levels, and decreased malondialdehyde concentration in the prefrontal cortex. Also, the increase chromatolysis and neuronal pyknosis of the pyramidal neurons of the prefrontal cortex were significantly attenuated by ADALE. Conclusions The result of this study showed that A. digitata aqueous leaf extract attenuated lead acetate-induced cortical neurodegeneration via inhibition of oxidative stress.
Collapse
Affiliation(s)
- Vivian Atuadu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria Enugu Campus (UNEC), Enugu, Enugu State, Nigeria
| | - Ben-Azu Benneth
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria
| | - John Oyem
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Emmanuel Esom
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria Enugu Campus (UNEC), Enugu, Enugu State, Nigeria
| | - Chris Mba
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria Enugu Campus (UNEC), Enugu, Enugu State, Nigeria
| | - Kate Nebo
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Godswill Ezemeka
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
| | - Chike Anibeze
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu State, Nigeria
| |
Collapse
|