1
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Momina SS, Gandla K. Flavonoid-Rich Trianthema decandra Ameliorates Cognitive Dysfunction in the Hyperglycemic Rats. Biochem Genet 2024:10.1007/s10528-024-10744-2. [PMID: 38570442 DOI: 10.1007/s10528-024-10744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The present study was aimed at the evaluation of neuroprotective ability of methanolic extract of Trianthema decandra (METD) against hyperglycemia-related cognitive impairment in rats. The extract of T. decandra was standardized by TLC and HPTLC methods. To verify the identity and purity of isolated compounds, they were segregated and characterized using various techniques, including UV-visible spectrophotometry, FT-IR, H-NMR, and Mass spectroscopy. α-Amylase and α-glucosidase inhibition property of the extracts were assessed in-vitro. The screening of the neuroprotective effects of METD in hyperglycemic rats was done utilizing Morri's water (MWM) and elevated plus maze (EPM) model, as well as acetylcholinesterase (AChE) activity. The extracts of Trianthema decandra and its chemical constituents, namely quercetin and phytol, demonstrated a significant protective effect on enzymes like α-amylase and α-glucosidase. Methanol and hydroalcoholic extracts have shown the strongest inhibitory activity followed by chloroform extract. Quercetin and phytol were associated with the methanolic and chloroform extracts which were identified using TLC and HPTLC techniques. During the thirty days of the study, the induction of diabetes in the rats exhibited persistent hyperglycemia, hyperlipidemia, higher escape latency during training trials and reduced time spent in target quadrant in probe trial in Morris water maze test, and increased escape latency in EPM task. Regimen of METD (200 and 400 mg/kg) in the diabetic rats reduced the glucose levels in blood, lipid, and liver profile and showed positive results on Morri's water and elevated plus maze tasks. During the investigation, it was determined that Trianthema decandra extracts and the chemical constituent's quercetin and phytol in it had anti-diabetic and neuroprotective activities.
Collapse
Affiliation(s)
- Sayyada Saleha Momina
- Department of Pharmacognosy and Phytochemistry, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India
| | - Kumaraswamy Gandla
- Department of Pharmacy, Chaitanya (Deemed to be University), Gandipet, HimayathNagar (Vill), Hyderabad, Telangana, 500075, India.
| |
Collapse
|
3
|
Kutpruek S, Suksri K, Maneethorn P, Semprasert N, Yenchitsomanus PT, Kooptiwut S. Imatinib prevents dexamethasone-induced pancreatic β-cell apoptosis via decreased TRAIL and DR5. J Cell Biochem 2023; 124:1309-1323. [PMID: 37555250 DOI: 10.1002/jcb.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic β-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic β-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic β-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Suchanoot Kutpruek
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Research Department, Division of Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Shalaby M, Abdеlaziz RR, Ghoneim HA, Suddеk GM. Imatinib mitigates experimentally-induced ulcerative colitis: Possible contribution of NF-kB/JAK2/STAT3/COX2 signaling pathway. Life Sci 2023; 321:121596. [PMID: 36940909 DOI: 10.1016/j.lfs.2023.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
RATIONALE Ulcerative colitis (UC) is a chronic immune-mediated disease characterized by recurrent inflammation, damage, and alteration of the large intestine's mucosal and submucosal surfaces. The purpose of this research was to evaluate the impact of tyrosine kinase inhibitor (imatinib) on experimentally induced UC in rats via acetic acid (AA). METHODS Male rats were randomly assigned to four groups: control, AA, AA + imatinib (10 mg/kg), and AA + imatinib (20 mg/kg). Imatinib (10 and 20 mg/kg/day) was orally supplied by oral syringe for one week before induction of UC. On the eighth day, Rats received enemas containing a 4 % solution of acetic acid to induce colitis. One day after inducing colitis, rats were euthanized and their colons were subjected to morphological, biochemical, histological, and immunohistochemical analysis. RESULTS Imatinib pretreatment significantly decreased macroscopic and histological damage scores, decreased disease activity index as well as colon mass index. In addition, imatinib successfully lowered the levels of malondialdehyde (MDA) in colonic tissues and enhanced superoxide dismutase activity (SOD) and glutathione content (GSH). Imatinib also reduced colonic levels of inflammatory interleukins (IL-23, IL-17, IL-6), JAK2 and STAT3. Furthermore, imatinib suppressed nuclear transcription factor kappa B (NF-kB/p65) level, and COX2 expression in colonic tissues. SIGNIFICANCE Imatinib may be a viable therapy option for UC as it halts the interaction network of NF-kB/JAK2/STAT3/COX2 signaling pathway.
Collapse
Affiliation(s)
- Mohamed Shalaby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Hamdy A Ghoneim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ghada M Suddеk
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
5
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Indapamide Increases IRS1 Expression and Modifies Adiponectin/NLRP3/PPARγ Crosstalk in Type 2 Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11040691. [PMID: 35453376 PMCID: PMC9026493 DOI: 10.3390/antiox11040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The current study aimed to evaluate the anti-diabetic effects of canagliflozin (CANA) and indapamide (INDA) and their impacts as adiponectin modulators in experimentally induced type 2 diabetes mellitus (T2DM). T2DM was associated with a significant rise in blood glucose level and HbA1C%, andreduced adiponectin and insulin secretions. Moreover, the malondialdehyde (MDA) contents in both the epididymal adipocytes and soleus muscle significantly escalated, while the total antioxidant capacity (TAC) and epididymal adipocyte Nrf2 expression significantly declined. Moreover, serum TNF-α, epididymal adipocyte’s NOD-like receptor protein 3, NLRP3, NF-κB and CD68 expressions markedly escalated, and serum IL-10 significantly declined. Furthermore, there was a significant escalation in PPARγ expression in epididymal adipocytes, with a significant reduction in soleus muscle’s expression of IRS1. CANA and INDA treatments markedly reduced blood glucose levels, increased adiponectin and insulin secretion, enhanced anti-oxidant defenses, and reduced oxidative burden, with marked anti-inflammatory impact. Interestingly, the impact of indapamide on DM indices and oxidative and inflammatory changes was comparable to that of canagliflozin. Nevertheless, indapamide had a superior effect compared to canagliflozin on HbA1c%, expression of IRS1 and reduction of NF-κB and CD68 expressions. INDA could be effective in regulating T2DM, with underlined anti-diabetic, antioxidant, and anti-inflammatory properties. INDA increased IRS1 expression and modified adiponectin/NLRP3/PPARγ crosstalk. The impacts of INDA are comparable to those of the standard anti-diabetic drug CANA.
Collapse
Affiliation(s)
- Mahmoud M. Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| | - Manar G. Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh P.O. Box 71666, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
- Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt
- Correspondence:
| | - Hatem A. Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.G.H.); (H.A.S.)
| |
Collapse
|
6
|
El-Sawah SG, Rashwan HM, Althobaiti F, Aldhahrani A, Fayad E, Shabana ES, El-Hallous EI, Amen RM. AD-MSCs and BM-MSCs Ameliorating Effects on The Metabolic and Hepato-renal Abnormalities in Type 1 Diabetic Rats. Saudi J Biol Sci 2022; 29:1053-1060. [PMID: 35197774 PMCID: PMC8847940 DOI: 10.1016/j.sjbs.2021.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.
Collapse
Key Words
- AD-MSCs, Adipose-derived mesenchymal stem cells
- AGEs, Advanced glycation end products
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BM-MSCs, Bone marrow-derived mesenchymal stem cells
- BUN, Blood urea nitrogen
- CD, Cluster of differentiation
- D, Diabetic
- DM, Diabetes mellitus
- DMEM, Dulbecco's modified Eagle's medium
- DN, Diabetic nephropathy
- Diabetes
- Diabetic nephropathy
- FBG, Fasting blood glucose
- FBS, Fetal bovine serum
- HDL-C, High-density lipoprotein cholesterol
- HO-1, Heme-oxygenase 1
- HbA1c, Glycosylated hemoglobin
- Hyperlipidemia
- IPCs, Insulin producing cells
- ISCT, International Society for Cellular Therapy
- LDL-C, Low-density lipoprotein cholesterol
- LPO, Lipid peroxidation
- MSCs
- MSCs, Mesenchymal stem cells
- PBS, Phosphate-buffered saline
- ROS, Reactive oxygen species
- SEM, Standard error of mean
- SPSS, Statistical Package for Social Scientists
- STZ, Streptozotocin
- T1DM, Type 1 diabetes mellitus
- TC, Total cholesterol
- TG, Triglycerides
- TL, Total lipids
- γ-GT, gamma glutamyl transferase
Collapse
Affiliation(s)
- Shady G. El-Sawah
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Hanan M. Rashwan
- Zoology Department, Faculty of Science, Arish University, North Sinai, Egypt
| | - Fayez Althobaiti
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Eman Fayad
- Biotechnology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - El-Shaimaa Shabana
- Fellow of Biochemistry, Genetic Unit, Children Hospital, Faculty of Medicine, Mansoura University, Egypt
| | | | - Rehab M. Amen
- Biology Department, College of Science, University of Bisha, Bisha 61922, P.O. Box 344, Saudi Arabia
| |
Collapse
|
7
|
Althubiti M. Tyrosine kinase targeting: A potential therapeutic strategy for diabetes. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:183-191. [PMID: 36247049 PMCID: PMC9555044 DOI: 10.4103/sjmms.sjmms_492_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been studied extensively in cancer research, ultimately resulting in the approval of many drugs for cancer therapy. Recent evidence from reported clinical cases and experimental studies have suggested that some of these drugs have a potential role in diabetes treatment. These TKIs include imatinib, sunitinib, dasatinib, erlotinib, nilotinib, neratinib, and ibrutinib. As a result of promising findings, imatinib has been used in a phase II clinical trial. In this review, studies that used TKIs in the treatment of both types of diabetes are critically discussed. In addition, the different molecular mechanisms of action of these drugs in diabetes models are also highlighted to understand their antidiabetic mode of action.
Collapse
|
8
|
Welsh N. Are off-target effects of imatinib the key to improving beta-cell function in diabetes? Ups J Med Sci 2022; 127:8841. [PMID: 36187072 PMCID: PMC9487420 DOI: 10.48101/ujms.v127.8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The small tyrosine kinase (TK) inhibitor imatinib mesylate (Gleevec, STI571) protects against both type 1 and type 2 diabetes, but as it inhibits many TKs and other proteins, it is not clear by which mechanisms it acts. This present review will focus on the possibility that imatinib acts, at least in part, by improving beta-cell function and survival via off-target effects on beta-cell signaling/metabolic flow events. Particular attention will be given to the possibility that imatinib and other TK inhibitors function as inhibitors of mitochondrial respiration. A better understanding of how imatinib counteracts diabetes will possibly help to clarify the pathogenic role of beta-cell signaling events and mitochondrial function, and hopefully leading to improved treatment of the disease.
Collapse
Affiliation(s)
- Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Makinde EA, Radenahmad N, Zaman RU, Olatunji OJ. Fatty Acids and Sterol Rich Stem Back Extract of
Shorea Roxburghii
Attenuates Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Diabetic Rats. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Nisaudah Radenahmad
- Department of Anatomy Faculty of Science Prince of Prince of Songkla University Hat Yai 90110 Thailand
| | - Raihan Uz Zaman
- Faculty of Thai Traditional Medicine Prince of Songkla University Hat Yai 90110 Thailand
| | | |
Collapse
|