1
|
Degotte G, Frederich M, Francotte P, Franck T, Colson T, Serteyn D, Mouithys-Mickalad A. Targeting Myeloperoxidase Activity and Neutrophil ROS Production to Modulate Redox Process: Effect of Ellagic Acid and Analogues. Molecules 2023; 28:molecules28114516. [PMID: 37298992 DOI: 10.3390/molecules28114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria is an infectious disease caused by a Plasmodium genus parasite that remains the most widespread parasitosis. The spread of Plasmodium clones that are increasingly resistant to antimalarial molecules is a serious public health problem for underdeveloped countries. Therefore, the search for new therapeutic approaches is necessary. For example, one strategy could consist of studying the redox process involved in the development of the parasite. Regarding potential drug candidates, ellagic acid is widely studied due to its antioxidant and parasite-inhibiting properties. However, its low oral bioavailability remains a concern and has led to pharmacomodulation and the synthesis of new polyphenolic compounds to improve antimalarial activity. This work aimed at investigating the modulatory effect of ellagic acid and its analogues on the redox activity of neutrophils and myeloperoxidase involved in malaria. Overall, the compounds show an inhibitory effect on free radicals as well as on the enzyme horseradish peroxidase- and myeloperoxidase (HRP/MPO)-catalyzed oxidation of substrates (L-012 and Amplex Red). Similar results are obtained with reactive oxygen species (ROS) produced by phorbol 12-mystate acetate (PMA)-activated neutrophils. The efficiency of ellagic acid analogues will be discussed in terms of structure-activity relationships.
Collapse
Affiliation(s)
- Gilles Degotte
- Laboratory of Medicinal Chemistry, Center of Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Michel Frederich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, Center of Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Thierry Franck
- Centre for Oxygen, Research & Development (CORD), Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Thomas Colson
- Laboratory of Medicinal Chemistry, Center of Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liège, Belgium
| | - Didier Serteyn
- Centre for Oxygen, Research & Development (CORD), Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
- Department of Clinical Veterinary, Equine Clinic, Large Animal Surgery, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Ange Mouithys-Mickalad
- Centre for Oxygen, Research & Development (CORD), Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Etsè KS, Zaragoza G, Demonceau A. Novel trans iodo(2-(N-alkylsulfamoyl)phenyl)bis(-triphenylphosphine palladium) complexes: Synthesis, mass spectrometry, X-ray structural description, steric map, near infrared analyses and catalytic activities evaluation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Etsè KS, Djidjolé Etsè K, Zaragoza G, Mouithys-Mickalad A. Structural description, IR, TGA, antiradical, HRP activity inhibition and molecular docking exploration of N-cyclohexyl-N-tosylformamide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Design, synthesis and biochemical evaluation of novel 2-amino-3-(7-methoxybenzo[d][1,3]dioxol-5-yl)propanoic acid using Horseradish peroxidase (HRP) activity, cellular ROS inhibition and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Insight into structural description of novel 1,4-Diacetyl-3,6-bis(phenylmethyl)-2,5-piperazinedione: synthesis, NMR, IR, Raman, X-ray, Hirshfeld surface, DFT and docking on breast cancer resistance protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|