1
|
Wang B, Xu T, Qiu C, Yu L, Xu S, Zhao X, Xu C, Tan F, Sheng H, Zhang N. Tenovin-6 exhibits inhibitory effects on the growth of Sonic Hedgehog (SHH) medulloblastoma, as evidenced by both in vitro and in vivo studies. Int Immunopharmacol 2024; 142:113075. [PMID: 39260312 DOI: 10.1016/j.intimp.2024.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Within MB, tumors driven by the Sonic Hedgehog (SHH) pathway represent the most heterogeneous subtype, known as SHH subtype medulloblastoma (SHH-MB). Tenovin-6, a recognized p53 activator, has been demonstrated to inhibit autophagy and modulate sirtuin activity, underscoring its potential as a novel therapeutic agent across various malignancies. However, its efficacy in treating SHH-MB remains unexplored. This study aims to investigate the inhibitory effects of tenovin-6 on SHH-MB and elucidate its underlying signaling pathways. We assessed the impact of tenovin-6 on cell proliferation through the CCK-8 and colony formation assays. The scratch and transwell invasion assays were utilized to evaluate the drug's effects on metastasis. Apoptosis and reactive oxygen species (ROS) levels were measured using flow cytometry. Potential signaling pathways were identified via transcriptomics and quantitative PCR (qPCR). Our in vivo studies involved a mouse xenograft model to explore tenovin-6's anticancer efficacy against SHH-MB. The findings indicate that tenovin-6 not only inhibits cell proliferation and metastasis in SHH-MB cell lines but also promotes apoptosis, which is closely linked to its proliferation-inhibiting properties. Additionally, animal experiments confirmed that tenovin-6 suppresses MB growth in vivo. We discovered that tenovin-6 reduces intracellular ROS levels and inhibits autophagy in SHH-MB by disrupting the fusion of autophagosomes with lysosomes, likely through inducing autophagosome formation.
Collapse
Affiliation(s)
- Bohong Wang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tao Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chenjie Qiu
- Pharmacy Department, Zhoushan Woman and Children Hospital, Zhoushan 316200, Zhejiang, China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Shangyu Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiangmao Zhao
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chao Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Feng Tan
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
2
|
Rao J, Wang X, Chen X, Liu Y, Jiang J, Wang Z. Multi-omics analysis reveals that Cas13d contributes to PI3K-AKT signaling and facilitates cell proliferation via PFKFB4 upregulation. Gene 2024; 927:148760. [PMID: 38992762 DOI: 10.1016/j.gene.2024.148760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The CRISPR-Cas system is a powerful gene editing technology, the clinical application of which is currently constrained due to safety concerns. A substantial body of safety research concerning Cas9 exists; however, scant attention has been directed toward investigating the safety profile of the emergent Cas13 system, which confers RNA editing capabilities. In particular, uncertainties persist regarding the potential cellular impacts of Cas13d in the absence of reliance on a cleavage effect. In this study, we conducted an initial exploration of the effects of Cas13d on HeLa cells. Total RNA and protein samples were extracted after transfection with a Cas13d-expressing plasmid construct, followed by transcriptomic and proteomic sequencing. Differential gene expression analysis identified 94 upregulated and 847 downregulated genes, while differential protein expression analysis identified 185 upregulated and 231 downregulated proteins. Subsequently, enrichment analysis was conducted on the transcriptome and proteome sequencing data, revealing that the PI3K-Akt signaling pathway is a common term. After intersecting the differentially expressed genes enriched in the PI3K-Akt signaling pathway with all the differentially expressed proteins, it was found that the expression of the related regulatory gene PFKFB4 was upregulated. Moreover, western blot analysis demonstrated that Cas13d can mediate PI3K-Akt signaling upregulation through overexpression of PFKFB4. CCK-8 assay, colony formation, and EdU experiments showed that Cas13d can promote cell proliferation. Our data demonstrate, for the first time, that Cas13d significantly impacts the transcriptomic and proteomic profiles, and proliferation phenotype, of HeLa cells, thus offering novel insights into safety considerations regarding gene editing systems.
Collapse
Affiliation(s)
- Jin Rao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuefu Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yudi Liu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junfeng Jiang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; Histology and Embryology Department, Naval Medical University, Shanghai, China.
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Yang S, Zhu Y, Ji C, Zhu H, Lao A, Zhao R, Hu Y, Zhou Y, Zhou J, Lin K, Xu Y. A five-in-one novel MOF-modified injectable hydrogel with thermo-sensitive and adhesive properties for promoting alveolar bone repair in periodontitis: Antibacterial, hemostasis, immune reprogramming, pro-osteo-/angiogenesis and recruitment. Bioact Mater 2024; 41:239-256. [PMID: 39149594 PMCID: PMC11324614 DOI: 10.1016/j.bioactmat.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that destroys the alveolar bone tissues, resulting in tooth loss. Poor eradication of pathogenic microorganisms, persistent malignant inflammation and impaired osteo-/angiogenesis are currently the primary challenges to control disease progression and rebuild damaged alveolar bone. However, existing treatments for periodontitis fail to comprehensively address these issues. Herein, an injectable composite hydrogel (SFD/CS/ZIF-8@QCT) encapsulating quercetin-modified zeolitic imidazolate framework-8 (ZIF-8@QCT) is developed. This hydrogel possesses thermo-sensitive and adhesive properties, which can provide excellent flowability and post-injection stability, resist oral fluid washout as well as achieve effective tissue adhesion. Inspirationally, it is observed that SFD/CS/ZIF-8@QCT exhibits a rapid localized hemostatic effect following implantation, and then by virtue of the sustained release of zinc ions and quercetin exerts excellent collective functions including antibacterial, immunomodulation, pro-osteo-/angiogenesis and pro-recruitment, ultimately facilitating excellent alveolar bone regeneration. Notably, our study also demonstrates that the inhibition of osteo-/angiogenesis of PDLSCs under the periodontitis is due to the strong inhibition of energy metabolism as well as the powerful activation of oxidative stress and autophagy, whereas the synergistic effects of quercetin and zinc ions released by SFD/CS/ZIF-8@QCT are effective in reversing these biological processes. Overall, our study presents innovative insights into the advancement of biomaterials to regenerate alveolar bone in periodontitis.
Collapse
Affiliation(s)
- Shiyuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunxiao Ji
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - An Lao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Li J, Liu X, Cai C, Zhang L, An Z, Guo Y, Zhang Y, Li W, Sun G, Li G, Kang X, Han R. Plasma exosome-derived miR-455-5p targets RPS6KB1 to regulate cartilage homeostasis in valgus-varus deformity (Gallus gallus). Poult Sci 2024; 103:104169. [PMID: 39244785 PMCID: PMC11407033 DOI: 10.1016/j.psj.2024.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Valgus-varus deformity (VVD) is a common long bone deformity in broilers. Imbalance in cartilage homeostasis is the main feature of leg disease. Exosomes act as an important intercellular communication vector that regulates chondrogenesis by encapsulating specific nucleic acids and proteins. However, the exact mechanism of how plasma exosomal miRNAs regulate cartilage homeostasis in VVD broilers remains unclear. This study first demonstrated the structural disorder, growth retardation, and reduced proliferative capacity of VVD cartilage in vitro and in vivo. Subsequently, VVD and Normal broiler plasma exosomes were collected for miRNA sequencing. Cartilage-specific miR-455-5p was extraordinarily emphasized by performing bioinformatics analysis on differential miRNA target genes and further validated by tissue expression profiling. PKH67 fluorescently labeled plasma exosomes were shown to be taken up by chondrocytes, deliver miR-455-5p, inhibit chondrocyte proliferation, and disrupt their homeostasis, and these effects could be inhibited by the miR-inhibitors. Mechanistically, MiR-455-5p targets Ribosomal Protein S6 Kinase B1 (RPS6KB1) to inhibit RPS6 phosphorylation and reduce the synthesis of key proteins for cartilage proliferation, which in turn inhibits cartilage proliferation and disrupts its homeostasis. In conclusion, the present study identified abnormalities in VVD cartilage tissue and clarified the specific mechanism by which plasma exosome-derived miR-455-5p regulates cartilage homeostasis.
Collapse
Affiliation(s)
- Jianzeng Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinxin Liu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunxia Cai
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lujie Zhang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyuan An
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoxi Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Luo SY, Liang HY, You MG, Chen W, Zhong ZG, Chen Y. Impact of fluoride and aluminum co-exposure on bone growth and quality in juvenile rats: dose and duration effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117241. [PMID: 39454355 DOI: 10.1016/j.ecoenv.2024.117241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to investigate the impact of the dosage and duration of fluoride and aluminum(F and Al) co-exposure on the skeletal growth and bone quality of juvenile rats. Forty-eight 8-week-old Sprague-Dawley rats were randomly assigned to normal control, low F and Al exposure, and high F and Al exposure groups, with 45-day and 90-day subgroups established for each. We measured body length, tibia length, conducted bone histomorphometric analysis of the proximal tibia, performed micro-CT scans and three-point bending tests of the femur. Compared to the age-matched control group, the low F and Al group at 45 days exhibited increased bone formation and stiffness; the low F and Al group at 90 days and the high F and Al group at 45 days showed increases in body length, tibia length, growth plate width, longitudinal bone growth rate, bone turnover, and improved microstructure. Notably, bone elastic stress only elevated in the high F and Al group at 45 days. Conversely, the high F and Al exposure group at 90 days experienced decreases in the aforementioned parameters, with the exception of growth plate width, and displayed abnormal hypertrophic chondrocyte morphology in the growth plate. In summary, long-term exposure to low levels of F and Al and short-term exposure to high levels of F and Al promote bone formation followed by bone resorption in juvenile rats, stimulating bone growth and enhancing bone quality. However, long-term exposure to high levels F and Al results in low bone turnover, slow bone growth, and reduced bone property.
Collapse
Affiliation(s)
- Shi-Ying Luo
- School of Ocean and Tropical Medicine, Basic Medical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hong-Ying Liang
- School of Ocean and Tropical Medicine, Basic Medical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Mei-Gui You
- Department of Basic Medicine, Xiamen Medical College, Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen, Fujian 361023, China
| | - Wen Chen
- School of Ocean and Tropical Medicine, Basic Medical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhi-Guo Zhong
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Yan Chen
- School of Ocean and Tropical Medicine, Basic Medical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
6
|
Meng X, Li H, Liu X, Li B, Liu Y, Li M, Sun D, Yang Y, Gao Y, Pei J. Drinking brick tea containing high fluoride increases the prevalence of osteoarthritis in Tibetan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3760-3770. [PMID: 38445824 DOI: 10.1080/09603123.2024.2324936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The prevalence of osteoarthritis (OA) in Tibetans is higher than that in Han, while Tibetans have a habit of drinking brick tea with high fluoride. A cross-sectional study was conducted to explore the association between fluoride exposure in drinking brick tea and OA. All subjects were divided into four groups by the quartiles (Q) of tea fluoride (TF) and urine fluoride (UF). ROC was plotted and OR were obtained using logistic regression model. The prevalence of OA in the Q3 and Q4 group of TF were 2.2 and 2.7 times higher than in the Q1 group, and the prevalence of OA in the Q2, Q3 and Q4 group of UF were 3.2, 3.5, and 4.1 times higher than in the Q1 group. ROC analysis showed the cutoff values were 4.523 mg/day (TF) and 1.666 mg/L (UF). In conclusion, excessive fluoride in drinking brick tea could be a risk factor for developing OA.
Collapse
Affiliation(s)
- Xinyue Meng
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Hanying Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Xiaona Liu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Bingyun Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Yang Liu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Mang Li
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Dianjun Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Yanmei Yang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Yanhui Gao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| | - Junrui Pei
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Heilongjiang Province, China
| |
Collapse
|
7
|
Liu Y, Yin Q, Liu B, Lu Z, Liu M, Meng L, He C, Chang J. Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells. Respir Res 2024; 25:370. [PMID: 39402516 PMCID: PMC11479573 DOI: 10.1186/s12931-024-03005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated. OBJECTIVES This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation. METHODS First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs. RESULTS Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway. CONCLUSION These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Qiling Yin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Bin Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Zheng Lu
- Tai'an Tumour Prevention and Treatment Hospital, Tai'an, Shandong, 271000, China
| | - Meijun Liu
- Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Ling Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| | - Chao He
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, 271000, China.
| | - Jin Chang
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| |
Collapse
|
8
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
9
|
Wang Y, Feng L, Jiang WD, Wu P, Liu Y, Zhang L, Mi HF, Zhou XQ. The effect of selenium on the intestinal health of juvenile grass carp based on the ERS-autophagy pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109808. [PMID: 39102968 DOI: 10.1016/j.fsi.2024.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Selenium (Se), a trace element, is vital for the maintenance of cellular redox balance, thyroid hormone metabolism, inflammation, and immunity. Aeromonas hydrophila (A. hydrophila) is a common Gram-negative conditional pathogenic bacterium in fish culture, posing a serious threat to intensive aquaculture. Our study investigated the influence of dietary Se on the intestinal immune function of grass carp (Ctenopharyngodon idella) and the related regulatory mechanisms. The 2160 healthy juvenile grass carp (9.76 ± 0.005 g) were randomly assigned to 6 test groups of 6 replicates each, and fed graded selenomethionine (0.05, 0.20, 0.40, 0.61, 0.77, 0.98 mg Se/kg diet) for 70 days and then injected with A. hydrophila for a 6-day attack test. The results indicated that appropriate Se levels (0.40 mg/kg diet) alleviated intestinal damage caused by A. hydrophila and increased intestinal immune substances C3 and C4 levels as well as the activity of acid phosphatase (ACP) and lysozyme (LZ) (P > 0.05). Appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) decreased intestinal pro-inflammatory cytokines (IFN-γ2, IL-6, IL-12p35, IL-17 A F and IL-17D) mRNA levels (P > 0.05) and increased intestinal anti-inflammatory factors (TGF-β1, IL-4/13A, IL-4/13B, IL-10 and IL-22) mRNA levels (P > 0.05) in juvenile grass carp. Further studies revealed that Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal endoplasmic reticulum stress (ERS)-related signaling pathway. Furthermore, we found that appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal autophagy in juvenile grass carp, which may be related to ULK1, Beclin 1, ATG5, ATG12, LC3, and P62. In conclusion, appropriate levels of Se can alleviate intestinal inflammation and inhibit ERS and autophagy in juvenile grass carp. A quadratic regression analysis of intestinal ACP and LZ also indicated that the Se requirements of juvenile grass carp were 0.59 and 0.51 mg/kg, respectively.
Collapse
Affiliation(s)
- Ya Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China; Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, 610041, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Chengdu, China; Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan, 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
10
|
Han Y, Zheng D, Ji Y, Feng Y, Chen Z, Chen L, Li H, Jiang X, Shen H, Tao B, Zhuang H, Bu W. Active Magnesium Boride/Alginate Hydrogels Rejuvenate Senescent Cells. ACS NANO 2024; 18:23566-23578. [PMID: 39145584 DOI: 10.1021/acsnano.4c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The clearance of senescent cells may be detrimental to low cell density diseases, such as intervertebral disc degeneration (IVDD), and rejuvenating these cells presents a formidable obstacle. In this study, we investigate a mild-alkalization strategy employing magnesium boride-alginate (MB-ALG) hydrogels to rejuvenate senescent cells associated with age-related diseases. MB-ALG hydrogels proficiently ensnare senescent cells owing to their surface roughness. The hydrolysis of MB-ALG hydrogels liberates hydroxide ions (OH-), effecting a transition from an acidic microenvironment (pH ∼ 6.2) to a mildly alkaline state (pH ∼ 8.0), thereby fostering senescent cell proliferation via activation of the PI3K/Akt/mTOR pathway. Additionally, H2 aids in ROS clearance, which reduces cellular oxidative stress. And, Mg2+ rejuvenates senescent cells by inhibiting Ca2+ influx and fine-tuning the sirt1-p53 signaling pathways. Both in vitro and in vivo experiments conducted on rat intervertebral discs corroborate the sustained antisenescence and rejuvenation properties of MB-ALG hydrogels, with effects persisting for up to 12 weeks postoperation. These discoveries elucidate the role of mild-alkalization in dictating cellular destiny and provide key insights for addressing age-related diseases.
Collapse
Affiliation(s)
- Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Hongjun Zhuang
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, P. R. China
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
11
|
Li P, Jiang W, Yang Q, Lu Y, Zhang J. Leptin protects chondrocytes by inhibiting autophagy via phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Heliyon 2024; 10:e35665. [PMID: 39170379 PMCID: PMC11336819 DOI: 10.1016/j.heliyon.2024.e35665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Leptin has been widely studied and found to have a significant impact on the development of osteoarthritis (OA). However, there are conflicting findings regarding the impact of leptin on chondrocytes. The study aimed to examine the impact of leptin on human chondrocytes and rats with OA. In the in vitro experiment, cartilage tissue obtained from patients hospitalized for knee replacement due to OA was collected for primary culture of chondrocytes. The proliferation and apoptosis of chondrocytes were assessed using cell counting kit-8 and flow cytometry. Autophagy levels were evaluated through monodansylcadaverine staining, mRFP-GFP-LC3 fluorescence, and transmission electron microscopy. Additionally, the expression of autophagy-related genes and proteins was analyzed using qRT-PCR and western blotting. In the in vivo experiment, an OA rat model was established. Following treatment with leptin and leptin antagonists, the cartilage tissues were examined using histology analysis (hematoxylin-eosin and Safranin O/fast green staining) and immunohistochemical. Mankin's score was utilized to assess the severity of OA, while qRT-PCR and western blotting were employed to detect the expression of autophagy-related genes and proteins in the cartilage. The ability of leptin to protect chondrocytes is achieved through the inhibition of autophagy via phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, district of Yu-Zhong, Chongqing, 400016, China
- Department of Orthopaedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Weiqian Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiming Yang
- Department of Orthopaedics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yang Lu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, district of Yu-Zhong, Chongqing, 400016, China
| | - Jian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, No.1, You-Yi Road, district of Yu-Zhong, Chongqing, 400016, China
| |
Collapse
|
12
|
Wang Y, Wang Z, Peng Z, Feng L, Tian W, Zhang S, Cao L, Li J, Yang L, Xu Y, Gao Y, Liu J, Yan J, Ma X, Sun W, Guo L, Li X, Shen Y, Qi Z. Cocaine and amphetamine-regulated transcript improves myocardial ischemia-reperfusion injury through PI3K/AKT signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13904. [PMID: 38923060 DOI: 10.1111/1440-1681.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lei Cao
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Xiaodong Ma
- Fifth People's Hospital of Dongying, Shandong, China
| | - Wangchun Sun
- Fifth People's Hospital of Dongying, Shandong, China
| | - Lihong Guo
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
| | - Xuan Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- NanKai University Eye Institute, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- Shengli Oilfield Central Hospital Gastrointestinal Disease Research Institute, Shandong, China
- Xinjiang Production and Construction Corps Hospital, Xinjiang, China
| |
Collapse
|
13
|
Wang M, Luo K, Sha T, Li Q, Dong Z, Dou Y, Zhang H, Zhou G, Ba Y, Yu F. Apoptosis and Inflammation Involved with Fluoride-Induced Bone Injuries. Nutrients 2024; 16:2500. [PMID: 39125380 PMCID: PMC11313706 DOI: 10.3390/nu16152500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. METHODS We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected to enrichment analyses. A TF (transcription factor)-mRNA-miRNA network and protein-protein interaction (PPI) network were constructed using Cytoscape, and the Human Protein Atlas (HPA) database was used to screen the expression of key proteins. The candidate pharmacological targets were predicted using the Drug Signature Database. RESULTS A total of 85 studies were included in this study, and 112 osteoblast-, 35 osteoclast-, and 41 chondrocyte-related differential expression genes (DEGs) were identified. Functional enrichment analyses showed that the Atf4, Bcl2, Col1a1, Fgf21, Fgfr1 and Il6 genes were significantly enriched in the PI3K-Akt signaling pathway of osteoblasts, Mmp9 and Mmp13 genes were enriched in the IL-17 signaling pathway of osteoclasts, and Bmp2 and Bmp7 genes were enriched in the TGF-beta signaling pathway of chondrocytes. With the use of the TF-mRNA-miRNA network, the Col1a1, Bcl2, Fgfr1, Mmp9, Mmp13, Bmp2, and Bmp7 genes were identified as the key regulatory factors. Selenium methyl cysteine, CGS-27023A, and calcium phosphate were predicted to be the potential drugs for skeletal fluorosis. CONCLUSIONS These results suggested that the PI3K-Akt signaling pathway being involved in the apoptosis of osteoblasts, with the IL-17 and the TGF-beta signaling pathways being involved in the inflammation of osteoclasts and chondrocytes in fluoride-induced bone injuries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (K.L.); (T.S.); (Q.L.); (Z.D.); (Y.D.); (H.Z.); (G.Z.); (Y.B.)
| |
Collapse
|
14
|
Ding X, Gao X, Ren A, Xu J, Jiang X, Liang X, Xie K, Zhou Y, Hu C, Huang D. Sevoflurane enhances autophagy via Rac1 to attenuate lung ischaemia‒reperfusion injury. Chem Biol Interact 2024; 397:111078. [PMID: 38815668 DOI: 10.1016/j.cbi.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Sevoflurane can attenuate lung ischaemia‒reperfusion injury (LIRI). However, the protective mechanism is unclear. In this study, we developed a LIRI model in vivo that animals (SD, n = 15) were subjected to the administration of 2.2 % sevoflurane 30 min before the onset of left pulmonary artery clamping for 45 min, which was then followed by 60 min of reperfusion treatment. Then, transcriptome sequencing was used to analyse lung tissues. Autophagy inhibition (3-MA) and Rac1-overexpression transfection plasmids were used in BEAS-2B cells, and BEAS-2B cells were subjected to hypoxia reoxygenation (H/R) and sevoflurane treatment. In both animal tissue and cells, inflammatory cytokines and apoptotic and autophagy molecules were measured by quantitative real-time PCR, western blotting and immunostaining. As a result, decreased arterial partial oxygen and damage to the histological structure of lung tissues were observed in LIRI model rats, and these effects were reversed by sevoflurane treatment. Activation of inflammation (elevated IL-1β, IL-6, and TNF-α) and apoptosis (elevated cleaved caspase3/caspase3 and Bax, degraded expression of Bcl2) and inhibition of autophagy (elevated P62, degraded expression of Beclin1 and LC3-II/LC3I) in the model group were ameliorated by sevoflurane. Transcriptome sequencing indicated that the PI3K/Akt pathway regulated by Rac1 plays an important role in LIRI. Furthermore, overexpression of Rac1 in a cell line inhibited the protective effect of sevoflurane in LIRI. Autophagy inhibition (3-MA) also prevented the protective effect of sevoflurane on inflammation and apoptosis. As shown in the present study, sevoflurane enhances autophagy via Rac1/PI3K/AKT signalling to attenuate lung ischaemia‒reperfusion injury.
Collapse
Affiliation(s)
- Xian Ding
- Department of Anesthesiology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Xiang Gao
- Department of Anesthesiology, The Affiliated Fujian Maternity and Child Health Hospital of Fujian Medical University, 350001, China
| | - Aolin Ren
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Xuliang Jiang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, 200030, China
| | - Xiao Liang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China
| | - Kangjie Xie
- Department of Anesthesiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, China
| | - Yan Zhou
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Chunxiao Hu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023, China
| | - Dongxiao Huang
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, 214002, China.
| |
Collapse
|
15
|
Xi S, Chen W, Ke Y. Advances in SIRT3 involvement in regulating autophagy-related mechanisms. Cell Div 2024; 19:20. [PMID: 38867228 PMCID: PMC11170824 DOI: 10.1186/s13008-024-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be used to identify new drug targets for SIRT3-related diseases. Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was identified using the keywords "silencing regulatory factor 2-like protein 3", "SIRT3" and "autophagy".
Collapse
Affiliation(s)
- Shuangyun Xi
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Weijun Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Ke
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- School of Forensic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
16
|
Quan C, Zhou S, Zhang Y, Kulyar MFEA, Gong S, Nawaz S, Ahmed AE, Mo Q, Li J. The autophagy-mediated mechanism via TSC1/mTOR signaling pathway in thiram-induced tibial dyschondroplasia of broilers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172305. [PMID: 38593872 DOI: 10.1016/j.scitotenv.2024.172305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.
Collapse
Affiliation(s)
- Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | | | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
17
|
Yan Q, Wang Q, Nan J, Chen T, Wang J, Zhang Y, Yuan L. Heme oxygenase 1 (HO1) regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway of yak Sertoli cells. Theriogenology 2024; 220:96-107. [PMID: 38503100 DOI: 10.1016/j.theriogenology.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
Successful male reproduction depends on healthy testes. Autophagy has been confirmed to be active during many cellular events associated with the testes. It is not only crucial for testicular spermatogenesis but is also an essential regulatory mechanism for Sertoli cell (SCs) ectoplasmic specialization integrity and normal function of the blood-testis-barrier. Hypoxic stress induces oxidative damage, apoptosis, and autophagy, negatively affecting the male reproductive system. Cryptorchidism is a common condition associated with infertility. Recent studies have demonstrated that hypoxia-induced miRNAs and their transcription factors are highly expressed in the testicular tissue of infertile patients. Heme oxygenase 1 (HO1) is a heat-shock protein family member associated with cellular antioxidant defense and anti-apoptotic functions. The present study found that the HO1 mRNA and protein are up-regulated in yak cryptorchidism compared to normal testes. Next, we investigated the expression of HO1 in the SCs exposed to hypoxic stress and characterized the expression of key molecules involved in autophagy and apoptosis. The results showed that hypoxic stress induced the upregulation of autophagy of SCs. The down-regulation of HO1 using siRNA increases autophagy and decreases apoptosis, while the over-expression of HO1 attenuates autophagy and increases apoptosis. Furthermore, HO1 regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. These results will be helpful for further understanding the regulatory mechanisms of HO1 in yak cryptorchidism.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China.
| | - Jinghong Nan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Tingting Chen
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Juntao Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
18
|
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn 3O 4@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials 2024; 305:122449. [PMID: 38194734 DOI: 10.1016/j.biomaterials.2023.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial role in the process of osteoarthritis (OA), which may be a promising target for therapy of OA. In this study, novel mitochondrial-targeting and SOD-mimic Mn3O4@PDA@Pd-SS31 nanozymes with near-infrared (NIR) responsiveness and synergistic cascade to scavenge mROS were designed for the therapy of OA. Results showed that the nanozymes accelerated the release of Pd and Mn3O4 under NIR irradiation, exhibiting enhanced activities of SOD and CAT mimic enzymes with reversed mitochondrial dysfunction and promoted mitophagy to effectively scavenge mROS from chondrocytes, modulate the microenvironment of oxidative stress, and eventually inhibit the inflammatory response. Nanozymes were excreted in vivo through intestinal metabolic pathway and had good biocompatibility, effectively reducing the inflammatory response and relieving articular cartilage degeneration in OA joints, with a reduction of 93.7 % and 93.8 % in OARSCI scores for 4 and 8 weeks respectively. Thus, this study demonstrated that the mitochondria targeting and NIR responsive Mn3O4@PDA@Pd-SS31 nanozymes could efficiently scavenge mROS, repair damaged mitochondrial function and promote cartilage regeneration, which are promising for the treatment of OA in clinical applications.
Collapse
Affiliation(s)
- Yuquan Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoming Chen
- Department of Spine Osteopathia, The First Affifiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
19
|
Chen Z, Chen Z, Gao S, Shi J, Li X, Sun F. PFOS exposure destroys the integrity of the blood-testis barrier (BTB) through PI3K/AKT/mTOR-mediated autophagy. Reprod Biol 2024; 24:100846. [PMID: 38160586 DOI: 10.1016/j.repbio.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Perfluorooctanesulfonate or perfluorooctane sulfonic acid (PFOS), a type of perfluorinated compound, is mainly found in consumer products. Exposure to PFOS could cause male reproductive toxicity by causing injury to the blood-testis barrier (BTB). However, the specific mechanisms through which PFOS affects male reproduction remain unclear. The mammalian target of rapamycin (mTOR) is a vital protein kinase that is believed to be a central regulator of autophagy. In this study, we established in vivo and in vitro models to explore the effects of PFOS on the BTB, autophagy, and the regulatory role of the mTOR signaling pathway. Adult mice were developmentally exposed to 0, 0.5, 5, and 10 mg/kg/day PFOS for five weeks. Thereafter, their testicular morphology, sperm counts, serum testosterone, expression of BTB-related proteins, and autophagy-related proteins were evaluated. Additionally, TM4 cells (a mouse Sertoli cell line) were used to delineate the molecular mechanisms that mediate the effects of PFOS on BTB. Our results demonstrated that exposure to PFOS induced BTB injury and autophagy, as evidenced by increased expression of autophagy-related proteins, accumulation of autophagosomes, observed through representative electron micrographs, and decreased activity of the PI3K/AKT/mTOR pathway. Moreover, treatment with chloroquine, an autophagy inhibitor, alleviated the effects of PFOS on the integrity of TM4 cells in the BTB and the PI3K/AKT/mTOR pathway. Overall, this study highlights that exposure to PFOS destroys the integrity of the BTB through PI3K/AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
20
|
Ji R, Zhang Z, Yang Z, Chen X, Yin T, Yang J. BOP1 contributes to the activation of autophagy in polycystic ovary syndrome via nucleolar stress response. Cell Mol Life Sci 2024; 81:101. [PMID: 38409361 PMCID: PMC10896891 DOI: 10.1007/s00018-023-05091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024]
Abstract
Abnormal autophagy is one of the vital features in polycystic ovary syndrome (PCOS). However, the underlying molecular mechanisms remain unelucidated. In this study, we aimed to investigate whether Block of Proliferation 1 (BOP1) is involved in the onset of autophagy activation of granulosa cells in PCOS. Firstly, we found that BOP1 expression was significantly down-regulated in the ovaries of PCOS mice, which was associated with the development of PCOS. Next, local injection of lentiviral vectors in the ovary for the overexpression of BOP1 significantly alleviated the phenotypes of elevated androgens, disturbed estrous cycle, and abnormal follicular development in PCOS mice. Subsequently, we found that knockdown of BOP1 activated autophagy of granulosa cells in the in vitro experiments, whereas overexpression of BOP1 inhibited autophagy in both in vivo and in vitro models. Mechanistically, BOP1 knockdown triggered the nucleolus stress response, which caused RPL11 to be released from the nucleolus into the nucleoplasm and inhibited the E3 ubiquitination ligase of MDM2, thereby enhancing the stability of p53. Subsequently, P53 inhibited mTOR, thereby activating autophagy in granulosa cells. In addition, the mRNA level of BOP1 was negatively correlated with antral follicle count (AFC), body-mass index (BMI), serum androgen levels, and anti-Mullerian hormone (AMH) in patients with PCOS. In summary, our study demonstrates that BOP1 downregulation inhibits mTOR phosphorylation through activation of the p53-dependent nucleolus stress response, which subsequently contributes to aberrant autophagy in granulosa cells, revealing that BOP1 may be a key target for probing the mechanisms of PCOS.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zhimo Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| |
Collapse
|
21
|
Yang Y, Tian T, Wang Z, Li S, Li N, Luo H, Jiang Y. LncRNA 220, a newly discovered long non-conding RNA inhibiting apoptosis and autophagy in Kupffer cells in LPS-induced endotoxemic mice through the XBP1u-PI3K-AKT pathway. Int Immunopharmacol 2024; 128:111497. [PMID: 38241842 DOI: 10.1016/j.intimp.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Sepsis is recognized as a potentially fatal condition characterized by acute organ dysfunction resulting from an imbalanced immune response to infection. Acute liver injury (ALI) arises as an inflammatory outcome of immune response dysregulation associated with sepsis. Kupffer cells, which are liver-specific macrophages, are known to have a significant impact on ALI, although the precise regulatory mechanism remains unclear. Numerous studies have showcased the regulatory impact of long non-coding RNAs (lncRNAs) on the progression of diverse ailments, yet their precise regulatory mechanisms remain predominantly unexplored. In this study, a novel long non-coding RNA (lncRNA), referred to as lncRNA 220, was discovered using high-throughput sequencing. The expression of lncRNA 220 was found to be significantly elevated in the livers of mice with lipopolysaccharide (LPS)-induced endotoxemia, specifically during the 8-hour time period. Furthermore, in Kupffer cells treated with LPS, lncRNA 220 was observed to inhibit apoptosis and autophagy by activating the PI3K-AKT-mTORC1 pathway. This effect was achieved through the reduction of X-box protein 1 unspliced (Xbp1u) mRNA stability and suppression of its translation in the context of endoplasmic reticulum stress (ERS). Ultimately, this intervention mitigated the progression of LPS-induced ALI. To summarize, our study establishes lncRNA 220 as a newly identified regulator that suppresses apoptosis and autophagy in Kupffer cells subjected to LPS treatment, indicating its potential as a molecular target for ALI in endotoxemic mice.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tian Tian
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenqi Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shan Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Nanhong Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|
22
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
23
|
Zhao TL, Qi Y, Wang YF, Wang Y, Liang H, Pu YB. 5-methoxytryptophan induced apoptosis and PI3K/Akt/FoxO3a phosphorylation in colorectal cancer. World J Gastroenterol 2023; 29:6148-6160. [PMID: 38186686 PMCID: PMC10768408 DOI: 10.3748/wjg.v29.i47.6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly prevalent malignancy worldwide, and new therapeutic targets urgently need to be found to prolong patient survival. 5-methoxytryptophan (5-MTP) is a tryptophan metabolite found in animals and humans. However, the effects of 5-MTP on proliferation and apoptosis of CRC cells are currently unknown. AIM To investigate the effects of 5-MTP on the proliferation, migration, invasion, and apoptosis abilities of CRC cells. Additionally, we seek to explore whether 5-MTP has the potential to be utilized as a drug for the treatment of CRC. METHODS In order to evaluate the effect of 5-MTP on CRC cells, a series of experiments were conducted for evaluation. Colony formation assay and Cell Counting Kit 8 assays were used to investigate the impact of 5-MTP on the proliferation of CRC cell lines. Cell cycle assays were employed to examine the effect of 5-MTP on cellular growth. In addition, we investigated the effects of 5-MTP on apoptosis and reactive oxygen species in HCT-116 cells. To obtain a deeper understanding of how 5-MTP affects CRC, we conducted a study to examine its influence on the PI3K/Akt signaling pathway in CRC cells. RESULTS This article showed that 5-MTP promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells. In many articles, it has been reported that PI3K/Akt/FoxO3a signaling pathway is one of the most important signaling pathways involved in internal regulating cell proliferation and differentiation. Nevertheless, 5-MTP combined with PI3K/Akt/FoxO3a signaling pathway inhibitors significantly promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells compared with 5-MTP alone in our study. CONCLUSION Therefore, there is strong evidence that 5-MTP can be used as an effective medicine for CRC treatment.
Collapse
Affiliation(s)
- Tian-Lei Zhao
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yue Qi
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi-Fan Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Yi Wang
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| | - Hui Liang
- Department of Gastroenterology, Naval Medical Center of PLA, Shanghai 200052, China
| | - Ya-Bin Pu
- Department of General Surgery, Naval Medical Center of PLA, Shanghai 200052, China
| |
Collapse
|
24
|
Jin Y, Zhou BH, Zhao J, Ommati MM, Wang S, Wang HW. Fluoride-induced osteoporosis via interfering with the RANKL/RANK/OPG pathway in ovariectomized rats: Oophorectomy shifted skeletal fluorosis from osteosclerosis to osteoporosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122407. [PMID: 37597730 DOI: 10.1016/j.envpol.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Osteosclerosis and osteoporosis are the two main clinical manifestations of skeletal fluorosis. However, the reasons for the different clinical manifestations are unclear. In this study, we established the fluoride (F) -exposed ovariectomized (OVX) and non-OVX rat models to assess the potential role of ovarian function loss in osteosclerosis and osteoporosis. Micro-CT scanning showed that excessive F significantly induced a high bone mass in non-OVX rats. In contrast, a low bone mass manifestation was presented in OVX F-exposed rats. Also, a prominent feature of increasing trabecular connectivity, collagen area, growth plate thickness, and reduced trabecular space was found by histopathological morphology in non-OVX F-exposed rats; an opposite result was observed in OVX F-exposed. These alterations indicated ovariectomy was a vital factor leading to osteosclerosis or osteoporosis in skeletal fluorosis. Furthermore, levels of bone alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase (TRAP) increased, combined with the increasing osteoclasts number, showing a sign of high bone turnover in both OVX and non-OVX F-exposed rats. Mechanistically, oophorectomy considerably activated the RANKL/RANK/OPG signaling pathway. Meanwhile, it was discovered that upregulated NF-κB positively facilitated the accumulation of nuclear factor of activated T-cells 1 (NFATC1), significantly promoting osteoclast differentiation. To sum up, this study greatly enriched the causes of clinical skeletal fluorosis and provided a new perspective for studying the pathogenesis of skeletal fluorosis.
Collapse
Affiliation(s)
- Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Shuai Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
25
|
Han X, Yang L, Tian H, Ji Y. Machine learning developed a PI3K/Akt pathway-related signature for predicting prognosis and drug sensitivity in ovarian cancer. Aging (Albany NY) 2023; 15:11162-11183. [PMID: 37851341 PMCID: PMC10637788 DOI: 10.18632/aging.205119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Ovarian cancer is one of the deadliest malignancies among females, generally having a poor prognosis. The PI3K/Akt pathway plays a vital role in the oncogenesis and progression of many types of cancer. Limited studies have fully clarified the role of PI3K/Akt pathway in the prognosis of ovarian cancer and its correlation with drug sensitivity. METHODS A prognostic PI3K/Akt pathway related signature (PRS) was constructed with 10 machine learning algorithms using TCGA, GSE14764, GSE26193, GSE26712, GSE63885 and GSE140082 datasets. Gaussian mixture and logistic regression were performed to identify the optimal models for classifying lymphatic and venous invasion. RESULTS The optimal prognostic PRS developed by Lasso + survivalSVM algorithm acted as an independent risk factor for overall survival (OS) of ovarian cancer patients and had a good performance in evaluating OS rate of ovarian cancer patients. Significant correlation was obtained between PRS-based risk score and Immune score, ESTIMATE score, immune cells and cancer-related hallmarks. Low risk score indicated a lower immune escape score, TIDE score, and higher PD1&CTLA4 immunophenoscore in ovarian cancer. Moreover, PRS-based risk score acted as an indicator for drug sensitivity in the immunotherapy and chemotherapy of ovarian cancer patients. CONCLUSIONS All in all, our study developed a prognostic PRS showing powerful and good performance in predicting clinical outcome of ovarian cancer patients. PRS could serve as an indicator for drug sensitivity in the chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Liu Yang
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Hui Tian
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| | - Yuanyuan Ji
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
26
|
Zhu R, Wang Y, Ouyang Z, Hao W, Zhou F, Lin Y, Cheng Y, Zhou R, Hu W. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol 2023; 215:115707. [PMID: 37506921 DOI: 10.1016/j.bcp.2023.115707] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
In vivo articular cartilage degeneration is an essential hallmark of osteoarthritis (OA), involving chondrocyte senescence, extracellular matrix degradation, chondrocyte death, cartilage loss, and bone erosion. Among them, chondrocyte death is one of the major factors leading to cartilage degeneration. Many studies have reported that various cell death modes, including apoptosis, ferroptosis, and autophagy, play a key role in OA chondrocyte death. Currently, there is insufficient understanding of OA pathogenesis, and there remains a lack of treatment methods to prevent OA and inhibit its progression. Studies suggest that OA prevention and treatment are mainly directed to arrest premature or excessive chondrocyte death. In this review, we a) discuss the forms of death of chondrocytes and the associations between them, b) summarize the critical factors in chondrocyte death, c) discuss the vital role of chondrocyte death in OA, d) and, explore new approaches for targeting the regulation of chondrocyte death in OA treatment.
Collapse
Affiliation(s)
- Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fuli Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
27
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
28
|
Linghu Y, Deng CN, He L, Wu Q, Xu L, Yu YN. Fluoride induces osteoblast autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway in vivo and in vitro. Exp Biol Med (Maywood) 2023; 248:1159-1172. [PMID: 37638639 PMCID: PMC10583752 DOI: 10.1177/15353702231191117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 08/29/2023] Open
Abstract
Fluorosis primarily manifests as bone damage in the form of dental fluorosis and skeletal fluorosis and represents a critical global public health challenge. However, few studies have examined autophagy-related signaling pathways in skeletal fluorosis. This study aimed to investigate the effect of fluoride on autophagy in osteoblasts using comprehensive methods and to explore the role of the PI3K/AKT/mTOR signaling pathway in regulating fluoride-induced autophagy in osteoblasts. Sprague-Dawley (SD) rats were exposed to different concentrations of fluoride (NaF: 5, 50, and 100 mg/L) for six months. Primary osteoblasts were treated with 0.5, 1.0, or 3.0 mM NaF. Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence staining, and western blotting were performed to evaluate morphological changes in bone tissues and autophagosomes and to detect the protein expression of autophagy-related markers and PI3K/AKT/mTOR signaling pathway-related molecules both in vivo and in vitro. The bone tissues of fluoride-exposed rats showed osteosclerosis, autophagosomes and autolysosomes. LC3B immunofluorescence staining revealed an increase in autophagosomes in the primary osteoblasts treated with fluoride. The LC3Ⅱ/Ⅰ ratio and levels of autophagy-related markers (Beclin 1 and Atg7) were increased, whereas P62 levels were decreased in bone tissues and primary osteoblasts in the fluoride groups. Simultaneously, p-AKT and p-mTOR levels were reduced in bone tissues and primary osteoblasts in the fluoride groups. Moreover, a PI3K inhibitor (LY294002) further downregulated p-AKT and p-mTOR protein expression but slightly increased the LC3Ⅱ/Ⅰ ratio in primary osteoblasts. These results demonstrate that fluoride induces autophagy in osteoblasts by inhibiting the PI3K/AKT/mTOR signaling pathway, which deepens our understanding of the molecular mechanisms underlying fluoride-induced bone damage and provides a theoretical basis for the prevention and treatment of skeletal fluorosis.
Collapse
Affiliation(s)
- Yan Linghu
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Chao-Nan Deng
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li He
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qi Wu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lin Xu
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guiyang 550004, China
| | - Yan-Ni Yu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
29
|
Liu S, Xu S, Liu S, Chen H. Importance of DJ-1 in autophagy regulation and disease. Arch Biochem Biophys 2023:109672. [PMID: 37336341 DOI: 10.1016/j.abb.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Autophagy is a highly conserved biological process that has evolved across evolution. It can be activated by various external stimuli including oxidative stress, amino acid starvation, infection, and hypoxia. Autophagy is the primary mechanism for preserving cellular homeostasis and is implicated in the regulation of metabolism, cell differentiation, tolerance to starvation conditions, and resistance to aging. As a multifunctional protein, DJ-1 is commonly expressed in vivo and is associated with a variety of biological processes. Its most widely studied role is its function as an oxidative stress sensor that inhibits the production of excessive reactive oxygen species (ROS) in the mitochondria and subsequently the cellular damage caused by oxidative stress. In recent years, many studies have identified DJ-1 as another important factor regulating autophagy; it regulates autophagy in various ways, most commonly by regulating the oxidative stress response. In particular, DJ-1-regulated autophagy is involved in cancer progression and plays a key role in alleviating neurodegenerative diseases(NDS) and defective reperfusion diseases. It could serve as a potential target for the regulation of autophagy and participate in disease treatment as a meaningful modality. Therefore, exploring DJ-1-regulated autophagy could provide new avenues for future disease treatment.
Collapse
Affiliation(s)
- Shiyi Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China; Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Sheng Xu
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Song Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
30
|
Zhang C, Wang Y, Huang F, Zhang Y, Liu Y, Wang Q, Zhang X, Li B, Angwa L, Jiang Y, Gao Y. Fluoride induced metabolic disorder of endothelial cells. Toxicology 2023; 492:153530. [PMID: 37121536 DOI: 10.1016/j.tox.2023.153530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Endemic fluorosis is a global public health problem. Cardiovascular diseases caused by fluoride are closely related to endothelial cell injury. Metabolism disorder of endothelial cells (ECs) are recognized as the key factor of endothelial dysfunction which has been a hot topic in recent years. However, the toxic effect of fluoride on vascular endothelium has not been elucidated. The aim of this study was to explore the alteration of endothelial cell metabolites in Human Umbilical Vein Endothelial Cells (HUVECs) exposed to NaF using LC-MS/MS technique. The screening conditions were Variable Importance for the Projection (VIP) > 1 and P < 0.05. It was found that the expression of the metabolites Lumichrome and S-Methyl-5'-thioadenosine was upregulated and of the other metabolites, such as Creatine, L-Glutamate, Stearic acid was downregulated. Differential metabolites were found to be primarily related to FoxO、PI3K/Akt and apoptosis signaling pathways by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. From the perspective of metabolism, this study explored the possible mechanism of fluoride induced endothelial cell injury which providing theories and clues for subsequent studies.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Yue Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Fengya Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Yaoyuan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China
| | - Yunzhu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Qingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaodi Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Bingyun Li
- School of public health, Shantou University, Shantou, People's Republic of China
| | - Linet Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, People's Republic of China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, People's Republic of China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
31
|
Ma L, Zhang C, Gui Y, Zou T, Xi S, Guo X. Fluoride regulates the differentiation and atrophy through FGF21/ERK signaling pathway in C2C12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114626. [PMID: 36764073 DOI: 10.1016/j.ecoenv.2023.114626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Excess intake of fluoride leads to a serious health issue called fluorosis. Fluorosis patients exhibit the symptom of muscle damage, but the specific mechanism remains unclear. Fibroblast growth factor 21 (FGF21) is a novel myokine that is involved in the regulation of myogenic differentiation, but whether fluoride induces skeletal muscle damage via FGF21 signaling has not been reported yet. In the current study, C2C12 cells were used to investigate the impact of fluoride on myogenic development and the involved regulatory role of FGF21/ERK signaling pathway. The expressions of the markers of myoblasts development and FGF21/ERK signaling pathway-related molecules were detected after fluoride treatment. The results indicated that fluoride notably inhibited the expressions of myogenic regulatory genes MyoD, MyoG and MyHC in C2C12 cells. In addition, fluoride increased the expressions of muscle atrophy-related markers MuRF1 and MAFbx. We proved that fluoride significantly inhibited the expression of FGF21 based on the RNA-seq results, and detected the expressions of downstream molecules FGFR1, KLB, Raf, MEK and ERK. Moreover, FGF21 pretreatment reversed the adverse effect of fluoride on the C2C12 cells and alleviated the atrophy of myotubes. Taken together, these findings indicated that fluoride suppressed differentiation and aggravated atrophy via FGF21/ERK signaling pathway in C2C12 cells. Our study has provided new evidence for the role of FGF21/ERK in fluoride-induced skeletal muscle damage and FGF21 may be one of the potential targets for prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Lan Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Chengmei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yu Gui
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Tingling Zou
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
32
|
In Silico Analysis of Ferroptosis-Related Genes and Its Implication in Drug Prediction against Fluorosis. Int J Mol Sci 2023; 24:ijms24044221. [PMID: 36835629 PMCID: PMC9961266 DOI: 10.3390/ijms24044221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Fluorosis is a serious global public health problem. Interestingly, so far, there is no specific drug treatment for the treatment of fluorosis. In this paper, the potential mechanisms of 35 ferroptosis-related genes in U87 glial cells exposed to fluoride were explored by bioinformatics methods. Significantly, these genes are involved in oxidative stress, ferroptosis, and decanoate CoA ligase activity. Ten pivotal genes were found by the Maximal Clique Centrality (MCC) algorithm. Furthermore, according to the Connectivity Map (CMap) and the Comparative Toxicogenomics Database (CTD), 10 possible drugs for fluorosis were predicted and screened, and a drug target ferroptosis-related gene network was constructed. Molecular docking was used to study the interaction between small molecule compounds and target proteins. Molecular dynamics (MD) simulation results show that the structure of the Celestrol-HMOX1 composite is stable and the docking effect is the best. In general, Celastrol and LDN-193189 may target ferroptosis-related genes to alleviate the symptoms of fluorosis, which may be effective candidate drugs for the treatment of fluorosis.
Collapse
|
33
|
Zhang Z, He C, Bao C, Li Z, Jin W, Li C, Chen Y. MiRNA Profiling and Its Potential Roles in Rapid Growth of Velvet Antler in Gansu Red Deer ( Cervus elaphus kansuensis). Genes (Basel) 2023; 14:424. [PMID: 36833351 PMCID: PMC9957509 DOI: 10.3390/genes14020424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application value in many fields of biomedical research. Among them, the nature of cartilage tissue and the rapid growth and development process make deer antler a model for studying cartilage tissue development or rapid repair of damage. However, the molecular mechanisms underlying the rapid growth of antlers are still not well studied. MicroRNAs are ubiquitous in animals and have a wide range of biological functions. In this study, we used high-throughput sequencing technology to analyze the miRNA expression patterns of antler growth centers at three distinct growth phases, 30, 60, and 90 days following the abscission of the antler base, in order to determine the regulatory function of miRNA on the rapid growth of antlers. Then, we identified the miRNAs that were differentially expressed at various growth stages and annotated the functions of their target genes. The results showed that 4319, 4640, and 4520 miRNAs were found in antler growth centers during the three growth periods. To further identify the essential miRNAs that could regulate fast antler development, five differentially expressed miRNAs (DEMs) were screened, and the functions of their target genes were annotated. The results of KEGG pathway annotation revealed that the target genes of the five DEMs were significantly annotated to the "Wnt signaling pathway", "PI3K-Akt signaling pathway", "MAPK signaling pathway", and "TGF-β signaling pathway", which were associated with the rapid growth of velvet antlers. Therefore, the five chosen miRNAs, particularly ppy-miR-1, mmu-miR-200b-3p, and novel miR-94, may play crucial roles in rapid antler growth in summer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Caixia He
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changhong Bao
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhaonan Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Wenjie Jin
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yanxia Chen
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
34
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
35
|
Jin P, Zhou Q, Xi S. Low-dose arsenite causes overexpression of EGF, TGFα, and HSP90 through Trx1-TXNIP-NLRP3 axis mediated signaling pathways in the human bladder epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114263. [PMID: 36343453 DOI: 10.1016/j.ecoenv.2022.114263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological studies have demonstrated an increased incidence of bladder cancer in arseniasis- endemic areas; however, the precise molecular mechanisms remain unknown. Our previous results have shown that the protein levels of EGF, TGFα, and HSP90 in arsenite-treated bladder uroepithelial cells increased markedly and contributed to hyperactivation of EGF receptors. The aim of this study was to further explore the regulatory ways underlying overexpression of EGF, TGFα, and HSP90 in these cells. The present results showed that both Trx and GSH systems were stimulated in arsenite-treated cells, and ROS levels in 2 μM arsenite-treated cells did not changed obviously; however, ROS levels in 4 μM arsenite-treated cells increased significantly. By using the antioxidant and specific inhibitors, we found that in 2 μM arsenite-treated cells, JNK/NF-κB signaling pathway was involved in overexpression of EGF and TGFα, and ERK/NF-κB signaling pathway contributed to HSP90 overexpression, however in 4 μM arsenite-treated cells, both ERK/ and JNK/NF-κB signaling pathways were involved in overexpression of EGF, TGFα, and HSP90, and PI3K/AKT/NF-κB signaling pathway contributed to overexpression of EGF and TGFα. Furthermore, our results also showed that the Trx1-TXNIP-NLRP3 axis was activated in arsenite-treated cells, and played a pivotal role in activation of the signaling pathways involved in overexpression of EGF, TGFα, and HSP90. In conclusion, the Trx1-TXNIP-NLRP3 axis might be activated by arsenite-induced redox imbalance in bladder uroepithelial cells, and mediate the activation of signaling pathways involved in overexpression of EGF, TGFα, and HSP90.
Collapse
Affiliation(s)
- Peiyu Jin
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qing Zhou
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Shuhua Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China.
| |
Collapse
|
36
|
Li N, Chen Z, Feng W, Gong Z, Lin C, Chen J, Chu C, Xu Q. Triptolide improves chondrocyte proliferation and secretion via down-regulation of miR-221 in synovial cell exosomes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154479. [PMID: 36194972 DOI: 10.1016/j.phymed.2022.154479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA), the most common type of inflammatory arthritis, can cause bone damage and disability. Triptolide, a prominent treatment for RA, has satisfactory anti-inflammatory effects. However, the mechanism of action of triptolide in RA remains unknown. PURPOSE This study aimed to explore the molecular mechanisms underlying triptolide-mediated improvements in RA and identify the miRNA pathway responsible for these effects. METHODS We identified various dysregulated miRNAs associated with RA by mining previously described microarray data and verified and screened these candidates using RT-qPCR. Hematoxylin-eosin staining was then applied to identify pathological changes in the affected joints, and cell counting kit-8 analysis and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. Extracted exosomes were verified using transmission electron microscopy. RESULTS Our results revealed that the legs of rats with collagen-induced arthritis presented with obvious swelling and bone damage, a high degree of inflammatory cell infiltration into the synovium, and structural changes to the cartilage. Data mining identified 39 dysregulated miRNAs in these tissues, and RT-qPCR further refined these observations to highlight miR-221 as a potential RA biomarker. Subsequent evaluations revealed that fibroblast-like synovial (FLS) cells secrete Exs carrying dysregulated miR-221 in vitro. These Exs mediate miR-221 levels, inflammation, and TLR4/MyD88 signaling via their fusion with chondrocytes, leading to changes in chondrocyte growth and metabolic factor levels. Additionally, the addition of triptolide impaired miR-221 expression, cell proliferation, inflammatory factors, and the protein levels of TLR4/MyD88 in RA-FLS and promoted the apoptosis of FLS. The therapeutic effect of triptolide on miR-221 Exs was reversed by miR-221 inhibitor in both normal and RA FLS. CONCLUSION Our research shows that effective treatment with triptolide is mediated by its regulation of growth and secretory functions of chondrocytes via the inhibition of miR-221 secretion by FLS, providing a new target and natural medicinal candidate for future RA treatments.
Collapse
Affiliation(s)
- Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Zhixin Chen
- Chinese Medicine Department, South China Agricultural University Hospital, 510642, Guangzhou, China
| | - Wei Feng
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Zhaohui Gong
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Cardiovascular, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Changsong Lin
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China.
| | - Congqiu Chu
- Oregon Health & Science University, 97239, Portland, OR, United States of America.
| | - Qiang Xu
- Guangzhou University of Chinese Medicine, 510405, Guangzhou, China; Department of Rheumatology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, Guangzhou, China.
| |
Collapse
|
37
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
38
|
Development of a carbazole-based fluorescent probe for quantitative detection of fluoride ions in aqueous systems. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Cai H, Wang Z, Tang W, Ke X, Zhao E. Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells. Front Genet 2022; 13:970699. [PMID: 36110206 PMCID: PMC9468880 DOI: 10.3389/fgene.2022.970699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular functions, such as cell proliferation, metabolism, autophagy, survival and cytoskeletal organization. Furthermore, mTOR is made up of three multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative mTOR complex 3. In recent years, increasing evidence has suggested that mTOR plays important roles in the differentiation and immune responses of mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal cellular and physiological functions, such as cell metabolism, survival and ageing, where it has emerged as a novel therapeutic target for ageing-related diseases. Therefore, the mTOR signaling may develop a large impact on the treatment of ageing-related diseases with MSCs. In this review, we discuss prospects for future research in this field.
Collapse
Affiliation(s)
- Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhan Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| |
Collapse
|
40
|
Yu Y, Li L, Yu W, Guan Z. Fluoride Exposure Suppresses Proliferation and Enhances Endoplasmic Reticulum Stress and Apoptosis Pathways in Hepatocytes by Downregulating Sirtuin-1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7380324. [PMID: 36046439 PMCID: PMC9420589 DOI: 10.1155/2022/7380324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the function and mechanism of Sirt-1 in fluorine-induced liver injury. Method Fluorosis rats were first established. The fluorine content, pathological structure, collagen fibers, and fibrosis in liver tissues were tested through the fluoride ion selective electrode method, H&E, Masson, and Sirius red staining; alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin 18 (IL-18), and tumor necrosis factor-α (TNF-α) levels in rat serum were also analyzed using ELISA kits. Then, the fluorosis cell model was built, which was also alleviated with NaF, Sirt-1 siRNAs, or endoplasmic reticulum stress (ERS) alleviator (4-PBA). CCK-8 also assessed cell proliferation; RT-qPCR or Western blots detect sirtuin-1 (Sirt-1), protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), and endoplasmic reticulum stress (ERS) and apoptosis-related protein levels in liver tissue. Results Our results uncovered that fluorine exposure could aggravate the pathological damage and fibrosis of rat liver tissues and increase indicators related to liver injury. And fluoride exposure also could downregulate Sirt-1 and upregulate ERS-related proteins (PERK, 78-kD glucose-regulated protein (GRP-78), and activating transcription factor 6 (ATF6)) and apoptosis-related protein (caspase-3 and C/EBP-homologous protein (CHOP)) in rat liver tissues. Besides, we proved that fluoride exposure could suppress proliferation and enhances ERS and apoptotic pathways in AML12 cells by downregulating Sirt-1. Moreover, we revealed that ERS alleviator (4-PBA) could induce proliferation and prevent ERS and apoptosis in fluorine-exposed AML12 cells. Conclusions We suggested that fluorine exposure can induce hepatocyte ERS and apoptosis through downregulation of Sirt-1.
Collapse
Affiliation(s)
- Yanlong Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550002, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
41
|
Zhang L, Luo X, Qiao S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer 2022; 127:30-42. [PMID: 35249103 PMCID: PMC9276773 DOI: 10.1038/s41416-022-01757-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Clear-cell renal-cell carcinoma (ccRCC) is one of the leading causes of tumour-related death worldwide. Methyltransferase-like 14 (METTL14) is reported to regulate m6A modification in cancers. The aim of this study is to investigate the biological function and molecular mechanism of METTL14 in the pathogenesis of ccRCC. METHODS Quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) assays were used to detect the expression of METTL14 and Pten. METTL14 overexpression or knockdown was used in the in vitro and in vivo studies to investigate the biological functions of METTL14. m6A-RNA immunoprecipitation and RNA immunoprecipitation were used to investigate the m6A modification mediated by METTL14. RESULTS METTL14 expression was significantly down-regulated in ccRCC tissues. Functionally, upregulation of METTL14 inhibited ccRCC cells proliferation and migration in vitro. METTL14 overexpression significantly inhibited the activation of the phosphoinositide 3 kinase (PI3K)/AKT signalling pathway. Furthermore, phosphate and tension homology deleted on chromosome ten (Pten) is a target of METTL14. Overexpression of METTL14 increased the m6A enrichment of Pten, and promoted Pten expression. METTL14-enhanced Pten mRNA stability was dependent on YTHDF1. CONCLUSIONS METTL14-mediated m6A modification of Pten mRNA inhibited tumour progression, suggesting that METTL14 might be a potential prognostic biomarker and effective therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Lili Zhang
- grid.413390.c0000 0004 1757 6938Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, P. R. China ,grid.417409.f0000 0001 0240 6969School of Laboratory Medicine, Zunyi Medical University, 563003 Zunyi, P. R. China
| | - Xiaofang Luo
- grid.417409.f0000 0001 0240 6969School of Laboratory Medicine, Zunyi Medical University, 563003 Zunyi, P. R. China
| | - Sen Qiao
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, 563003, Zunyi, P. R. China. .,School of Laboratory Medicine, Zunyi Medical University, 563003, Zunyi, P. R. China.
| |
Collapse
|
42
|
Varışlı B, Darendelioğlu E, Caglayan C, Kandemir FM, Ayna A, Genç A, Kandemir Ö. Hesperidin Attenuates Oxidative Stress, Inflammation, Apoptosis, and Cardiac Dysfunction in Sodium Fluoride-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2022; 22:727-735. [PMID: 35606666 DOI: 10.1007/s12012-022-09751-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/30/2022] [Indexed: 01/08/2023]
Abstract
Excessive fluoride intake has been reported to cause toxicities to brain, thyroid, kidney, liver and testis tissues. Hesperidin (HSP) is an antioxidant that possesses anti-allergenic, anti-carcinogenic, anti-oxidant and anti-inflammatory activities. Presently, the studies focusing on the toxic effects of sodium fluoride (NaF) on heart tissue at biochemical and molecular level are limited. This study was designed to evaluate the ameliorative effects of HSP on toxicity of NaF on the heart of rats in vivo by observing the alterations in oxidative injury markers (MDA, SOD, CAT, GPX and GSH), pro-inflammatory markers (NF-κB, IL-1β, TNF-α), expressions of apoptotic genes (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic markers (Beclin 1, LC3A, LC3B), expression levels of PI3K/Akt/mTOR and cardiac markers. HSP treatment attenuated the NaF-induced heart tissue injury by increasing activities of SOD, CAT and GPx and levels of GSH, and suppressing lipid peroxidation. In addition, HSP reversed the changes in expression of apoptotic (caspase-3, -6, -9, Bax, Bcl-2, p53, cytochrome c), levels of autophagic and inflammatory parameters (Beclin 1, LC3A, LC3B, NF-κB, IL-1β, TNF-α), in the NaF-induced cardiotoxicity. HSP also modulated the gene expression levels of PI3K/Akt/mTOR signaling pathway and levels of cardiac markers (LDH, CK-MB). Overall, these findings reveal that HSP treatment can be used for the treatment of NaF-induced cardiotoxicity.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| | - Özge Kandemir
- Technical Sciences Vocatinal School, Aksaray University, Aksaray, Turkey
| |
Collapse
|